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Abstract

Superconductivity has been a topic of significant interest to the physics com-

munity for over a century. However, despite persistent effort, there remain

many unsolved problems and unmeasured phenomena. Although the physics

of p-wave superconductivity was developed in the 1960s there have been little

to no conclusive measurements of a p-wave superconductor. The subject of

this thesis, UTe2, has ignited a new wave of interest in p-wave superconducting

states as it offers the exciting prospect of measuring unusual surface electronic

states, such as zero-energy Andreev bound states, and helical or chiral topo-

logical surface states. The latter state being a prerequisite for non-Abelian

fermion statistics and Majorana zero modes.

Low-temperature spectroscopic-imaging scanning tunnelling microscopy is

an ideal experimental platform with which to study such a superconductor as

it allows direct, high energy resolution measurement of the surface electronic

states. Using this tool, we present research conducted over the last four years

which, we hope, contributes to the understanding of this new material and

outlines how one could search for the effects of p-wave superconductivity in

other compounds.

In Chapter 1 we discuss the theoretical framework frequently used in su-

perconductivity research. Where relevant, we highlight the differences between

conventional s-wave superconductors and their p-wave counterparts. In Chap-

ter 2 we explain the essential operating principles of a spectroscopic-imaging

scanning tunnelling microscope (SI-STM) and the experimental techniques

used to acquire the results presented herein. Chapter 3 provides an overview

of the wealth of theoretical and experimental work which has taken place since

the discovery of UTe2’s superconducting properties. Taking these results with

the experimental results presented in this thesis, there is strong support for

the presence of a p-wave superconducting state in UTe2.

Chapter 4 features the results of our first SI-STM research project which
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makes use of a superconducting scan tip to enhance the spectroscopic reso-

lution of our STM system. By measurement of the superconducting energy

gap across a representative field of view we discover the presence of a spatially

modulating superconducting state, a pair density wave (PDW) at the (0 -1 1)

crystal surface. This is likely to be the first observation of a spatially modu-

lating p-wave superconducting state, highlighting the ubiquity of such states

in varying material systems. While performing superconducting scan tip mea-

surements of this PDW, we discovered a zero-energy Andreev bound state at

the (0 -1 1) surface. We discuss the theory of how such states come about

and how they can be measured in Chapter 5. We also discuss the theory of

topological superconductivity and the diverse classification scheme associated

with it. Chapter 6 then presents direct measurement of the surface Andreev

bound state supported by a newly developed s-wave - insulator - p-wave tun-

nelling model. Using this model and tip-sample dependent tunnelling mea-

surements, we place restrictions on the form of superconducting order present

in UTe2. Finally, in Chapter 7 we present a detailed band structure model

which reveals the electronic states responsible for low energy scattering at the

surface of UTe2. These measurements reveal unique scattering signatures of

the quasiparticle surface band expected from a crystal whose superconducting

order parameter transforms as the B3u irreducible representation of the crystal

point symmetry group D2h.
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Chapter 1

Unconventional

Superconductivity

1.1 Introduction

It has been a hundred years since the advent of quantum mechanics1 and the

subsequent discoveries of uniquely quantum properties such as superposition

and entanglement. First discovered in the context of atomic theory, it was

thought that quantum effects could only be observed on the scale of single

atoms. However, it has since been shown that macroscopic systems may exhibit

quantum effects and there are few better examples of macroscopic quantum

systems than superfluid and superconducting condensates. The discovery of

superconductivity by Heike Kamerlingh Onnes in 1911 stands out as the first

observation of a macroscopic quantum condensate, predating the observation

of Bose-Einstein condensation2 or coherent laser light3.

While the conventional (s-wave) superconductors discovered by Onnes are

now well understood there remains an enormous amount of research interest in

the families of “high-temperature” superconductors, such as the iron-pnictides

and the cuprates. The research presented in this thesis is focused on the exotic

properties of a superconductor, UTe2, whose transition temperature is only a

few degrees above the absolute zero of temperature, Tc ≈ 2 K. The motiva-

tion for studying UTe2 comes from the growing scientific consensus that this

material is a p-wave superconductor. Such superconductors are exceedingly

rare and there are only a handful of candidate p-wave superconductors dis-

covered thus far. These superconductors are expected to exhibit a plethora of

unusual properties. As we’ll see below, during our team’s study of UTe2 we
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encountered finite-momentum pairing states and a surface bound state whose

characteristics give us some insight into the pairing symmetry of this unique

material. Before we discuss this latest research we will provide some back-

ground into the phenomenon of superconductivity and those aspects relevant

to the research below.

1.2 Cooper Pairs & the BCS Wavefunction

Fritz London was perhaps the first to identify the role of macroscopic quan-

tum condensation in superconductivity and superfluidity4. Together with his

brother Heinz they developed the first phenomenological theories of supercon-

ductivity in the form of the London equations.

∂js
∂t

=
nse

2

m
E (1.1)

∇× js = −nse
2

m
h (1.2)

Here we assume that the charge carriers in a superconductor are composed

of a superfluid and normal fluid fraction such that the total electron density

is n = nn + ns. In the London equations, the js term is the superfluid current

density and h, the local magnetic field. These two equations describe the

essential characteristics of a superconductor, namely its resistanceless currents

and expulsion of magnetic fields over a characteristic length scale, in this case

the London penetration depth λL =
√

mc2

4πnse2
.

While phenomenological, these equations are very successful in describing

the macroscopic electrodynamics of superconductors but how such properties

come about was very poorly understood at the time of the Londons. In the

nearly 90 years since there has been significant progress. We now firmly un-

derstand the mechanism which underlies the superconductors studied by the

Londons and so, to begin, we will discuss the theoretical framework derived

to explain these conventional superconductors. In doing so we will find that

it establishes a description of superconductivity which can be applied more

generally.

We begin with Fröhlich, who was the first to suggest that, in conventional

superconductors, lattice interactions may allow an attractive interaction be-

tween electrons resulting in bound pairs5. This was expanded upon by Cooper
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for an individual pair6 and by Bardeen, Cooper, and Schrieffer who together

showed how such pairs condense7. We consider a general treatment and begin

with the assumption that pairs of electrons, Cooper pairs, are the building

blocks of the superconducting condensate and can thus be expressed by a pair

creation operator

P †
k,σ1,σ2

= c†k,↑c
†
−k,↓ (1.3)

Note that we will begin by describing a zero momentum spin-singlet super-

conducting state, one in which the pairs of fermions have opposite spin and

momentum, and introduce the concept of spin triplet Cooper pairs and finite-

momentum states later.

We then create a pair of fermions in orbital g(r1 − r2) such that

ã† =
∑
k

gkP
†
k (1.4)

For such paired fermion states to be considered truly bosons and to form

a true Bose-Einstein condensate, these operators must observe the bosonic

commutation relations

[ã, ã†] = 1 (1.5)

However substitution of this pseudoboson operator ã† into Eq. 1.5 yields

[ã, ã†] =
∑
k,k′

g∗k′g∗k

[
c−k′,↓ck′,↑, c

†
k,↑c

†
−k,↓

]
=
∑
k

|gk|2(1− nk,↑ − nk,↓) (1.6)

Thus suggesting that superconductivity is a special case of boson condensation

which differs from that of a simple non interacting BEC at T = 0. We continue

nonetheless with the concept of condensation as it remains applicable and look

for a coherent state similar to that in a BEC

|ψBEC⟩ = eαa
† |0⟩ (1.7)

|ψBCS⟩ = eα
∑

k gkP
†
k |0⟩ = eα

∑
k gkc

†
k,↑c

†
−k,↓ |0⟩ =

[∏
k

eαgkc
†
k,↑c

†
−k,↓

]
|0⟩ (1.8)

Thankfully the exponential terms allow us to turn the sum over k states to a

product. Furthermore, our pseudo bosonic operator is actually composed of

fermionic operators and we cannot put two such fermions in the same k state
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as

(c†k,↑c
†
−k,↓)

2 = 0 (1.9)

So we can expand the exponential term to just the zero-th and first order terms

of the Taylor expansion as all other terms are zero.

eαgkc
†
k,↑c

†
−k,↓ = 1 + αgkc

†
k,↑c

†
−k,↓ (1.10)

After these expansions the wavefunction is then

|ψBCS⟩ =
∏
k

(
1 + αgkc

†
k,↑c

†
−k,↓

)
|0⟩ (1.11)

Currently, this wavefunction is not normalized. To do so, we consider a

specific k orbital such that |0k⟩ is the vacuum for that orbital. We then obtain

the normalization constant

⟨ψBCS|ψBCS⟩ =
∏
k

(
1 + |αgk|2

)
(1.12)

Dividing |ψBCS⟩ by the square root of this constant we obtain

|ψBCS⟩ =
∏
k

(
1√

1 + |αgk|2
+

αgk√
1 + |αgk|2

c†k,↑c
†
−k,↓

)
|0⟩ (1.13)

Finally we define these prefactors to be

uk =
1√

1 + |αgk|2
(1.14)

vk =
|αgk|2√
1 + |αgk|2

(1.15)

And arrive at the following expression for the ground state wavefunction

|ψBCS⟩ =
∏
k

(
uk + vkc

†
k,↑c

†
−k,↓

)
|0⟩ (1.16)

Thus we find the general BCS wavefunction recognisable from many intro-

ductory textbooks to superconductivity8,9. However, we still know very little

about this ground state wavefunction. Therefore we will go further and cal-

culate the ground state energy, the quasiparticle excitations from this ground

state, and then crucially we must extend this formalism to unconventional
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superconducting states.

1.3 The BCS Gap Equation

In real materials the interaction term of the Hamiltonian, which binds fermions,

is in general, a complicated function depending on the momentum of the

fermionic states under consideration, as well as their individual spin. Such

an interaction potential could arise from several sources including lattice in-

teractions, ferromagnetic coupling, or anti-ferromagnetic coupling. In the case

of s-wave superconductors the isotope effect10 implicated the role of electron-

phonon coupling allowing Cooper6 to simplify the Hamiltonian to the form

HBCS =
∑
k,σ

ϵk,σc
†
k,σck,σ +

∑
k,k′

Vk,k′c†k,↑c
†
−k,↓c−k′,↓ck′,↑ (1.17)

As we are concerned with a bulk, macroscopic superconducting state, the

double creation and annihilation terms of the Hamiltonian have macroscopic

occupation. We can then make use of the mean-field approximation to evaluate

the energy of the BCS condensate. To do so, we replace both c†k,↑c
†
−k,↓ and

c−k′,↓ck′,↑ by the following

c†k,↑c
†
−k,↓ = ⟨c†k,↑c

†
−k,↓⟩+ (c†k,↑c

†
−k,↓ − ⟨c†k,↑c

†
−k,↓⟩) (1.18)

c−k′,↓ck,↑ = ⟨c−k′,↓ck′,↑⟩+ (c−k′,↓ck′,↑ − ⟨c−k′,↓c−k′,↑⟩) (1.19)

As the term in brackets on the right-hand side is necessarily small we can

neglect terms which are the product of both brackets resulting in the mean-

field Hamiltonian

HMF
BCS =

∑
k,σ

ϵkσc
†
k,σck,σ +

∑
k,k′

Vk,k′

(
c†k,↑c

†
−k,↓⟨c−k′,↓ck′,↑⟩

+ ⟨c†k,↑c
†
−k,↓⟩c−k′,↓ck,↑ − ⟨c†k,↑c

†
−k,↓⟩⟨c−k′,↓ck′,↑⟩

)
(1.20)

To ensure energy is measured from the chemical potential we replace ϵk with

ξk = ϵk − µ and furthermore we can define the order parameter such that

∆k = −
∑
k′

Vk,k′⟨c−k′,↓ck′,↑⟩ (1.21)
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And arrive at a mean-field Hamiltonian of the form

HMF
BCS =

∑
k,σ

ξk,σc
†
k,σck,σ −

∑
k

(
∆kc

†
k,↑c

†
−k,↓ +∆∗

kc−k,↓ck,↑ −∆k⟨c†k,↑c
†
−k,↓⟩

)
(1.22)

This Hamiltonian cannot be solved for its eigenvalues unless made diagonal,

that is, expressed in terms of number operators of the form a†kak. To diago-

nalize this mean-field Hamiltonian we turn to the approach taken by Nikolay

Bogoliubov11 and replace the normal state quasiparticle operators with new

linear combinations of these operators, namely

γk,↑ = u∗kck,↑ + v∗kc
†
−k,↓ (1.23)

γ†−k,↓ = ukc
†
−k,↓ − vkck,↑ (1.24)

These Bogoliubov operators are weighted superpositions of the initial electron-

like and hole-like quasiparticle states and, as such, follow the fermionic com-

mutation relations such that

{γk,σ, γ†k′,σ′} = δk,k′δσ,σ′ (1.25)

{γk,σγk′,σ′} = 0 (1.26)

By use of these commutation relations the normal state operators may be

written as a combination of Bogoliubov operators such that

ck,↑ = ukγk,↑ − v∗kγ
†
−k,↓ (1.27)

c†−k,↓ = u∗kγ
†
−k,↓ + vkγk,↑ (1.28)

After a good deal of algebra and through the use of the commutation relations

above, we find that the off-diagonal coefficients, of the form γ−k,↓γk,↑, will be

zero when

2ξkukvk +∆kv
2
k −∆∗

ku
2
k = 0 (1.29)

Solutions of this equation are of the form

uk = |uk|eiϕk/2 vk = |vk|e−iϕk/2 ∆k = |∆k|eiϕk (1.30)

Notably, the phase ϕk of the order parameter defines the relative phase of

these quasiparticle excitations. An s-wave superconductor exhibits a constant
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phase in k-space, however, interesting effects arrive for unconventional super-

conductors, in which the phase of the order parameter varies in k-space. We

will discuss the consequences of this momentum-dependent phase later. In

any case, substitution of these equations into Eq. 1.29 allows us to derive

expressions for |uk|2 and |vk|2 and, crucially, diagonalizes the Hamiltonian in

Eq. 1.22.

|uk|2 =
1

2

(
1 +

ξk√
ξ2k + |∆k|2

)
(1.31)

|vk|2 =
1

2

(
1− ξk√

ξ2k + |∆k|2

)
(1.32)

Defining the term Ek =
√
ξ2k + |∆k|2 and substituting these expressions into

Eq. 1.22, in which the normal state quasiparticle operators have been replaced

with Bogoliubov operators, yields the diagonalized Hamiltonian

HMF
BCS =

∑
k

Ek

(
γ†k,↑γk,↑ + γ†−k,↓γ−k,↓

)
+
∑
k

[
ξk − Ek +∆k⟨c†k,↑c

†
−k,↓⟩

]
(1.33)

Which is of the desired form

HBCS =
∑
k,σ

Ekγ
†
k,σγk,σ + Eg (1.34)

This new Hamiltonian includes the new Bogoliubov quasiparticles, or bo-

goliubons, which are superpositions of electron and hole states with the relative

weight of electron-like and hole-like quasipartiles being controlled by |uk| and
|vk|. Therefore, at energies far above the chemical potential, when ξk ≫ ∆k,

the bogoliubon operator γ†k becomes hole-like, while far below the chemical

potential these new quasiparticles are almost entirely electron-like. Schemati-

cally the functions |vk|2 and |uk|2, which define the electron-ness or hole-ness

of the bogoliubons respectively, are plotted in Fig. 1.1a.

A consequence of the BCS theory, one which was crucial in its experimental

verification12, is the formation of an energy gap in the density of quasiparticle

states. This energy gap is clearly seen upon plotting the energy dispersion

of Bogoliubov quasiparticles as shown in Fig. 1.1b. The gap value is defined

relative to the chemical potential, therefore, the full gap is 2|∆k|. The effect

on the quasiparticle density of states can be found by relating the density of
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Figure 1.1: a. Distribution of weighting factors |vk|2 and |uk|2 as a function
of energy ξk. Far from the chemical potential ξk ≪ 0 or ξk ≫ 0 Bogoliubov
quasiparticles are almost entirely electron-like or hole-like while exactly at the
chemical potential Bogoliubov quasiparticles are equal superpositions of hole-
like and electron-like quasiparticles. b. Bogoliubov quasiparticle dispersion
Ek. A clear gap of magnitude 2|∆k| = 0.5meV is observed, the magnitude
of the order parameter in all plots shown is defined to be |∆k| = 0.25meV in
correspondence with that observed in UTe2. The quasiparticle dispersion in
the normal state Ek = |ξk| is indicated by grey dashed lines. c. Ratio of the
density of quasiparticle states in the superconducting Ns(E) and normal state
Nn(E). Two sharp coherence peaks are formed around the energy gap ±|∆k|.

states of Bogoliubov quasiparticles with those of the normal state such that

NS(E)dE = Nn(ξ)dξ (1.35)

In all singlet superconductors, the energy gap is several milli-electronvolts

in magnitude allowing us to make the approximation that the density of

states (DOS) around the energy gap is similar to that at the Fermi level

Nn(ξ) = N(0). This allows us to write the simple relation for the modified

DOS. Note that the states previously below ∆ are pushed up to the energy

gap, forming coherence peaks. These DOS spectra are readily observed by

dI/dV measurement in STM and will appear frequently later.

NS(E)

N(0)
=

dξ

dE
=

 E√
E2−∆2 , E > ∆

0 E < ∆
(1.36)

In real materials the order parameter may be anisotropic and feature point

or line nodes in momentum space. This anisotropy alters the DOS, as the gap

function contribution features a sum/integral over momentum space. To see
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this more clearly we assume the DOS is

N(E) =
2

Ω

∑
k

δ(Ek − E) (1.37)

where Ω is the 3D k-space volume considered. We then make use of the

Bogoliubov quasiparticle dispersion

Ek = ±
√
ξ2k + |∆k|2 (1.38)

Converting the sum over k-space to a 3D integral and considering a 2D gap

function in the kx − ky plane we obtain

N(E) = N0

∫
dΩk

4π

∫
dξδ(

√
ξ2 + |∆0gk|2 − E) (1.39)

= N0

∫
dΩk

4π

E√
E2 − |∆0gk|2

(1.40)

For a d -wave superconductor with line nodes in the kx−ky plane, the order
parameter is well described by ∆k = ∆0 cos(2θk), where θk is the angle in the

kx − ky plane. By performing the substitution x = cos(2θ) we arrive at the

expression13

N(E) = N0
E

∆0

∫ +1

−1

dxRe

{
1√

(E/∆0)− x2

}
(1.41)

= N0
E

∆0

π
4

|E| < ∆0

1
2
arcsin

(
∆0

E

)
|E| ≥ ∆0

(1.42)

We plot this function in Fig. 1.2a and immediately see some key differences

between the DOS of d -wave and s-wave superconductors. In contrast to the

s-wave DOS, which falls sharply at the gap edge (Fig. 1.1c), the DOS of a

d -wave superconductor decreases linearly due to the presence of line nodes of

normal state quasiparticles which remain excited at energies within the gap.

However, at E = 0 even these quasiparticles are completely gapped out and

N(0) = 0. Even the coherence peaks which are prominent in the s-wave case

are replaced by weaker kinks in the DOS at the gap edge. These features

can be observed in d -wave superconducting samples however the exact shape

of the spectrum depends strongly on the experimental setup, the presence of

impurities, and the disorder of the samples14.
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Figure 1.2: a. The density of states (DOS) of a d -wave superconductor with
line nodes in the kx − ky plane, calculated by Eq. 1.41. b. The DOS of a
p-wave superconductor with point nodes along the kz axis calculated from Eq.
1.43. The in-gap DOS falls as N(E) ∝ E2

Of particular relevance to this thesis is the physics of p-wave superconduc-

tivity. The DOS for such a state can be calculated in a similar way to the

above however now we consider the order parameter |∆k| = ∆0 sin(θk) and

use the substitution sin(θk) =
√
1− x213

N(E) = N0
E

∆0

∫
dxRe

{
1√

(E/∆0)2 + x2 − 1

}
= N0

E

∆0

∣∣∣∣∣1 +
E
∆0

1− E
∆0

∣∣∣∣∣ (1.43)

From Fig. 1.2b we see that, similar to the d -wave case, the DOS within the

superconducting gap does not fall drastically as in the s-wave superconductor.

This p-wave order parameter also features nodes, however, these are point

nodes rather than the line nodes of a d -wave superconductor. These point

nodes are single, point-like excitations near zero energy and consequently do

not contribute to the DOS as significantly as line nodes.

1.4 Macroscopic Phase & Off-Diagonal Long

Range Order

Before moving forward to describe more diverse superconducting condensates

we make some brief comments on the limits of the BEC picture of superconduc-

tivity and the source of the U(1) symmetry breaking which defines the macro-

scopic order parameter phase. We begin by understanding that Bose-Einstein
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condensation is a case of a broader framework of macroscopic condensation,

introduced by Oliver Penrose and Lars Onsager15, known as off-diagonal long-

range order (ODLRO). This approach makes use of the single-particle and

two-particle density matrix

ρ1(r1, r
′
1) = N

∫
dr2

∫
dr3 . . .

∫
drNΨ

∗(r1, r2, . . . , rN)Ψ(r′1, r2, . . . , rN)

(1.44)

ρ2(r1, r2, r
′
1, r

′
2) = N(N − 1)

∫
dr3

∫
dr4 . . .∫

drNΨ
∗(r1, r2, . . . , rN)Ψ(r′1, r

′
2, . . . , rN) (1.45)

We may also define such a matrix at finite temperature by including the par-

tition function Z =
∑

n e
−βEn such that

ρ1(r1, r
′
1) =

N

2

∑
n

e−βEn

∫
dr2

∫
dr3 . . .∫

drNΨ
∗
n(r1, r2, . . . , rN)Ψn(r

′
1, r2, . . . , rN) (1.46)

where En and Ψn are the n-th eigenenergy and eigenvector of the system

respectively. This matrix is Hermitian and can be diagonalized so that the

trace of the density matrix at a point, r1 = r′1, is the particle number Trρ1 =∫
drρ1(r1, r1) = N and Trρ2 =

∫
drρ2(r1, r2, r1, r2) = N(N − 1)

If we consider spinless bosons whose α-th eigenvalue of ρ1 is nα with eigen-

vector χα(r), we can write

ρ1(r, r
′) =

∑
α

nαχ
∗
α(r

′)χα(r) (1.47)

At T = 0 non-interacting bosons condense to a single k = 0 eigenstate, χ0 =

1/
√
V , giving the simple expression for the density operator for any r and r′

ρ1(r
′, r) = ⟨ψ̂†(r′)ψ̂(r)⟩ = Nχ∗

0(r
′)χ0(r) = N/V (1.48)

In general, for finite temperatures and interaction strengths the occupancy of

this orbital χ0 is not complete and the density matrix decreases to a constant

value N < N0 for |r′ − r| large, where N0 is the total particle number. Above

the transition temperature this long-range correlation is not present and the
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density matrix falls exponentially to zero for |r′ − r| → ∞. In superconduc-

tors, the pair terms on the right-hand side of the Hamiltonian Eq. 1.22 allow

quasiparticles to scatter into and out of the condensate therefore, at finite

temperature and with weak interactions between pairs, the density matrix ρ2

remains finite for |r′ − r| large thus confirming that superconductivity falls

under the category of ODLRO. From this interpretation the Meissner effect

and flux quantisation is an expected property of superconductors as it is for

that of a charged condensate with macroscopic occupation16. In fact, it is be-

lieved that the BCS ground state can be continuously tuned to a BEC ground

state, this is referred to as the BCS-BEC crossover, and is an area of ongoing

research in condensed matter and ultra-cold atom systems17.

In the mean-field treatment above we introduced a Hamiltonian which does

not conserve particle number. As particle number is the conjugate of phase,

i ∂

∂N̂
= ϕ, we therefore expect superconductors to exhibit macroscopic phase

coherence at T = 0 however, it is possible to write down the BCS equations such

that particle number is conserved. Phase coherence cannot then be considered

a direct result of this convenient derivation of the BCS equations but rather

a physical effect. In reality, the phase of the superconductor is the result of

the degeneracy of the BCS ground state. In the thermodynamic limit, the

difference in energy between a system with N or N + 1 pairs is negligible and

so there is large degeneracy to the ground state. These degenerate ground

states can then be labelled by the phase field ϕ. The choice of a particular

ground state at T = 0 is then a choice of a particular ϕ and the breaking

of local U(1) phase rotation symmetry18. For an s-wave superconductor this

choice of phase is an isotropic value over all momentum space ϕk = ϕ−k = ϕ

however, as we will now see, this is not true of the superconductors of recent

interest.

1.5 Unconventional Pairing & d-Vector Rep-

resentation

In our derivation of the BCS wavefunction, Eq. 1.16, we assumed that the pair

potential, the interaction term which binds quasiparticles into Cooper pairs,

gk, is isotropic. While this is mostly correct in the case of phonon-mediated

Cooper pairing it is certainly not applicable to what are known as the un-

conventional superconductors. Such superconductors are at the forefront of
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research and include the cuprates, iron-based, heavy-fermion, and organic su-

perconductors19. To describe these superconducting states we must consider a

broader classification of Cooper pairing which arises naturally when consider-

ing fermionic statistics. Two fermions at positions r1 and r2 and with spins α

and β must be odd parity under exchange of particles

ψ†
α(r1)ψ

†
β(r2) = −ψ†

β(r2)ψ
†
α(r1) (1.49)

Consequently the Cooper pair wavefunction or the mean-field term responsible

for ODLRO

bk,α,β = ⟨c−k,αck,β⟩ (1.50)

must also obey fermionic commutation relations under exchange of particles.

As this term depends on the orbital and spin components of the two quasipar-

ticle operators, we can express the mean-field operator as a product of orbital

and spin dependent functions

bk,α,β = f(k)χα,β (1.51)

From this we can see that two distinct pairing types are possible, a spin singlet

pairing state and a spin triplet state whose corresponding orbital functions are

even and odd-parity in momentum space respectively. More explicitly,

f(k) = f(−k) χα,β =
1√
2
(|↑↓⟩ − |↓↑⟩)

f(k) = −f(−k) χα,β =


|↑↑⟩
1√
2
(|↑↓⟩+ |↓↑⟩)

|↓↓⟩

This mean-field operator is very closely related to the superconducting order

parameter, see Eq. 1.21, thus the order parameter obeys the same particle

exchange relations and can be in a spin singlet or triplet form. As we are now

considering the role of spin in Cooper pairing we adopt a useful notation which

makes rotations of the order parameter much easier to calculate. We express

the order parameter in terms of Pauli matrices, such that

∆k = ∆0(iσ2) + i(d(k) · σ)σ2 (1.52)
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Figure 1.3: a. Phase diagram of superfluid 3He under applied pressure
and magnetic field as a function of temperature sourced from Ref. [20].
b. The superconducting energy gap of the B- and A-Phase of 3He respec-
tively. Substitution of the A-Phase d-vector, Eq. 1.56 into the dispersion
Eq. 1.57 yields zeros/nodes in the superconducting energy gap wherever
|d(k)|2 ± |d(k) × d∗(k)| = 0 c. Schematic of chiral order parameter phase
winding in momentum space

where ∆0 is a scalar constant and d(k) is the d-vector which is the triplet order

parameter required to capture anisotropic pairing. In terms of their individual

components the above is then

∆k =

(
∆k,↑↑ ∆k,↑↓

∆k,↓↑ ∆k,↓↓

)
=

(
−dx(k) + idy(k) ∆0 + dz(k)

−∆0 + dz(k) dx(k) + idy(k)

)
(1.53)

This d-vector notation now allows us to classify superconducting states

in many different materials. In superfluid He we conveniently have SO(3)

symmetry and can express the d-vector in terms of the spherical harmonic

functions such that

di(k) =
l∑

m=−l

ηli,mYl,m(k̂) (1.54)

Since these spherical harmonic functions define the shape of the atomic orbitals

we adopt a similar naming convention in superconductivity research such that

we label l = 0 states to be s-wave, l = 1 p-wave, l = 2 d -wave, etc. As an

example we briefly introduce the pairing states of 3He, which is believed to be

somewhat analogous to UTe2. The phase diagram for this isotope is shown

in Fig. 1.3 and displays three distinct superfluid phases, the A, A1, and B

phase. It has been known for decades that these phases exhibit pairing in the
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l = 1 or p-wave channel and from experiment the momentum dependence of

the d-vector has been firmly established21. For the B phase, this d-vector is

simply

dB(k) ∝

kxky
kz

 (1.55)

While this is an example of p-wave pairing it’s important to realize that this

superfluid state is isotropic, or full-gapped, and exhibits odd-parity in momen-

tum space (Fig. 1.3b). In comparison, the A phase of 3He is defined by the

d-vector

dA(k) ∝

kx + iky

0

0

 (1.56)

The anisotropy of the d-vector suggests an anisotropy in pair formation and

consequently in the energy gap. For an unconventional superconductor, the

quasiparticle dispersion relation Ek is modified to include the triplet order

parameter so that the complete dispersion relation is

Ek =
√
ξ2k + |∆k|2 =

√
ξ2k +∆2(|d(k)|2 ± |d(k)× d∗(k)|) (1.57)

where the d-vector has been normalized and ∆ controls the amplitude of the

gap function. Substitution of the A phase d-vector then reveals points in k-

space for which there is no change in the dispersion from the normal state,

namely when kx = 0 and ky = 0. These points in k-space are referred to as

nodes or nodal points. Their presence alters many of the properties of the

superconductor/superfluid including the density of states, electronic specific

heat capacity, magnetic penetration depth, and many others. Of relevance

to later discussions of UTe2 is that the A phase of 3He is a chiral superfluid

phase. Such states are referred to as chiral in reference to the handedness

of their momentum space phase winding. This phase winding is the result

of the continuous π/2 phase shift between the kx and ky components of the

order parameter. The chirality of the phase winding is then determined by the

choice of degenerate order parameters with opposite phase winding kx ± iky

as ei
π
2 = i while e−iπ

2 = −i. Chiral superfluid/superconducting states are of

significant importance in current research as they are expected to host exotic

fractionalized quasiparticles with non-Abelian statistics known as Majorana
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Figure 1.4: Character table for the point group symmetry D2h outlining the
irreducible representations of this group and the associated symmetries of these
irreducible representations in Schoenflies notation23. E is the identity operator,
Cn is a rotation through 2π/n, I is inversion symmetry, σ is a reflection in a
specified plane

zero modes22.

While rotational symmetry, SO(3), is conserved in a fluid this is not true

of crystalline systems which host superconductivity. In crystalline systems,

the symmetry of the lattice necessarily determines the symmetry of the super-

conducing order parameter. In the d-vector notation it is the d-vector which

transforms as the irreducible representations Γ of the point symmetry group

G of the crystal.

d(k) =

dΓ∑
i=1

ηiψ
Γ
i (k̂) (1.58)

Here dΓ is the dimensionality of the irreducible representation. These irre-

ducible representations are classified by their parity such that order parame-

ters which transform as even parity or gerade irreducible representations Γg are

necessarily spin singlet, while those which transform as odd-parity or ungerade

Γu are spin triplet. The crystal point symmetry group of UTe2 is D2h and its

irreducible representations are listed in Fig. 1.4. There are four even and four

odd-parity irreducible representations in this group of which the Ag and Au

are fully gapped while the Bg or Bu states are nodal.
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1.6 Finite-momentum Pairing States

As we’ve seen some key approximations were made in the derivation of the BCS

relations in Section 1.3. Firstly, Cooper pairs were assumed to form singlet,

s-wave states. We’ve now extended our system of classification to encompass

states of higher orbital angular momentum such as p- and d -wave. The second

assumption is that Cooper pairs form with zero centre of mass momentum.

We will now see that this is also an oversimplification of real materials and

that superconducting states with non-zero momentum are realizable.

1.6.1 Fulde-Ferrell and Larkin-Ovchinnikov (FFLO)

States

The first suggestion of finite-momentum pairing states came from two sepa-

rate reports, one by Fulde and Ferrell (FF)24 and the other from Larkin and

Ovchinnikov (LO)25. Combined, the states reported by these authors are re-

ferred to as the FFLO state and it has been sought after for decades. Only

recently, in the heavy-fermion and organic superconductors has this state be-

come realizable26,27. We briefly comment on the form of the FF and LO

states as it is instructive to see how finite-momentum Cooper pairing may

come about. For an s-wave superconductor whose Cooper pairs have zero net

spin there are two ways in which a magnetic field may destroy Cooper pair

condensation. These are orbital and paramagnetic pair-breaking effects. The

presence of a magnetic field leads to the formation of Abrikosov vortices which

thread Type-II superconductors. Around these vortices flows a supercurrent of

Cooper pairs reducing the superconducting condensation energy and in their

centre are unpaired, normal-state quasiparticles. Thus, at a certain critical

field Horb
c2

= Φ0/2πξ
213, the orbital limiting field, the cores of these vortices

overlap destroying the Cooper pair condensate. Note that Φ0 is the magnetic

flux quantum, the unit of magnetic flux which passes through a single vortex

Φ0 = h/2e, and ξ is the superconducting coherence length, a natural length

scale for Cooper pairs.

The paramagnetic pair-breaking effect arises from the energy difference

between spin-up and spin-down quasiparticles in the presence of a magnetic

field. This Pauli paramagnetic effect causes pair breaking when the energy dif-

ference between polarized and unpolarized quasiparticles exceeds the Cooper

pair binding energy. This Pauli paramagnetic limiting field is then Hpara
c2

=
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√
2∆/gµB where g is the Landé g-factor and µB is the Bohr magneton. The

ratio of these orbital and paramagnetic limiting fields gives the Maki param-

eter27 which is instructive in searching for candidate materials for an FFLO

state.

α =
√
2
Horb

c2

Hpara
c2

(1.59)

The insight from FFLO was the observation that the Pauli paramagnetic

pair-breaking effect can be reduced by the formation of new Cooper pairs

between the Zeeman split bands. This new Cooper pair has finite centre of

mass momentum as it results from pairing between two spin-split bands now

separated in k-space by the wavevector q, thus we have Cooper pairs of the

form c†k,↑c
†
−k+q,↓ (Fig. 1.5a,b). Fulde and Ferrell24 proposed a state in which

this finite-momentum pairing occurs for just one half of the Zeeman split Fermi

surfaces, this is shown in Fig. 1.5c. The order parameter for such a state is

∆FF(r) = ∆eiq·r (1.60)

and is spatially homogeneous but has phase varying in real space and breaks

time-reversal symmetry. For a spin-split Fermi surface which does not experi-

ence depairing, the pairing states with q and −q are degenerate. The resulting
state is that considered by Larkin and Ovchinnikov25

∆LO(r) = ∆(eiq·r + eiq·r) = 2∆ cos (q · r) (1.61)

and has a spatially varying magnitude for the order parameter of wavelength

2π/q. In real materials several q vectors may have equivalent upper critical

fields in which case the order parameter of the finite-momentum condensate is

∆FFLO(r) =
M∑

m=1

∆me
iqm·r (1.62)

where M is the number of equivalent scattering wavevectors allowing Cooper

pairing between the spin-split Fermi surface.

The difficulty in discovering the FFLO state in experiment is a result of the

balance between orbital and pair breaking effects, which is expressed in the

Maki parameter, α. While the Pauli paramagnetic limiting field is increased

by the formation of an FFLO state, it does nothing to increase the orbital lim-

iting field as vortices are still formed by the condensate. Materials with large
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Figure 1.5: a. Zero momentum Cooper pairing for a single Fermi surface. b.
Finite-momentum Cooper pairing in a Zeeman split Fermi surface. Cooper
pairs form with centre of mass momentum q. c. Cooper pairing as considered
by Fulde and Ferrell24. Pairs are formed between half of the spin-split Fermi
surface giving rise to condensates with spatially varying phase. Figure repro-
duced from Ref. [27]

Maki parameters such as the heavy-fermion superconductors are some of the

only materials which could stabilise such a state. In experiment, the applied

magnetic field must also be aligned parallel to the superconductor surface with

small misalignment providing flux for the formation of vortices thus limiting

the formation of the FFLO state. While finite-momentum pairing was first

discussed in the context of the FFLO state, current research has uncovered

spatially modulating Cooper pair density and superconducting energy gaps

which, while possibly related to the FFLO states, are not simply explained by

the above theory.

1.6.2 Pair Density Waves (PDWs)

1.6.2.1 Ginzburg-Landau Theory

In recent years modulations in the superconducting energy gap and Cooper

pair density have been discovered in a range of materials including s-wave28, d -

wave29, and p-wave superconductors30 despite no magnetic field being applied

during these measurements. Without a detailed microscopic interpretation of

these results these finite-momentum pairing states are referred to generally



32

as pair density waves (PDWs) and feature both/either spatial modulations in

the order parameter magnitude and/or phase. It is worth noting that while

the superconducting energy gap is related to the Cooper pair density in BCS

theory, this is not necessarily true for all materials. A notable example of this is

in the pseudogap phase of the cuprate superconductors. In fact the significant

research interest in PDWs stems from their role in the superconducting, and

possibly in the pseudogap phase, of the cuprates. In these systems the PDW

phase has been hypothesized as the parent phase to the high-temperature

superconductor31,32,33,34.

Although we do not have a microscopic mechanism for PDW formation, we

can make use of a phenomenological theory of superconductivity introduced in

1950 by Ginzburg and Landau35 and now commonly referred to as Ginzburg-

Landau theory. This approach is based upon Landau’s theory of second-order

phase transitions which introduced the concept of an order parameter. This

order parameter is zero in the high-temperature, disordered phase of the sys-

tem but takes on a finite value after a certain symmetry of the Hamiltonian

is no longer preserved. The most commonplace example of such an order pa-

rameter is the magnetic moment M of a ferromagnet. In the paramagnetic,

high-temperature phase M = 0. Below the Curie temperature rotational sym-

metry is broken as the magnetic moments at each crystal site align generating

a finite macroscopic moment M > 0. The same concept can be applied to a

superconductor however, now we use the superconducting energy gap, which

we assume is proportional to the Cooper pair number density, ∆ ∝ √
ns, to

be the order parameter produced by the formation of Cooper pairs. Ginzburg

and Landau’s approach is based upon the difference in free energy between the

normal and superconducting state. For a uniform superconductor in the ab-

sence of an applied magnetic field, this difference is simply a Taylor expansion

of |∆|2 or in terms of the number density ns. Here we keep only the first two

terms assuming we are near T = Tc

fs − fn = α|∆|2 + β|∆|4 (1.63)

Thermal equilibrium is achieved when the free energy is minimized thus β

must be positive to ensure that such a minimum exists. The coefficient α may

take either positive or negative sign and these two cases correspond to the

normal and superconducting state respectively. For α > 0 the free energy is

minimised for |∆|2 = 0 as seen in Fig. 1.6a. However, for α < 0 the above
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equation is minimised when |∆|2 = −α
β
as in a bulk superconductor unaffected

by screening currents or defects. We plot this form of the free energy in Fig.

1.6b. We can then assume some simple forms for α and β

α(T ) = α′(T − Tc) β(T ) ≈ β(Tc) > 0 (1.64)

Thus below, but near TC , the order parameter takes the form

|∆|2 = −α
β
=
α′(Tc − T )

β
=
α′(1− T/Tc)

β
(1.65)

Which is of the same form as the BCS expression for the magnitude of a con-

ventional superconducting energy gap with temperature |∆| ∝ (1− T/Tc)
1/2.

From Fig. 1.6b we see that in the superconducting state the free energy is

lowered so that minima now occur at fs−fn < 0. For a Type-I superconductor,

the energy difference between the superconducting and normal state must be

related to the critical field of the superconductor, Hc. By comparison with

the full Gibbs free energy G(T,H) = F − HB/4π these minima must have

a depth of Hc/8π, this magnitude is indicated schematically in Fig. 1.6b by

double-headed yellow arrows.

Finally, we note that the Ginzburg-Landau order parameter is necessarily

a complex function with a phase term ∆eiϕ. The free energy is then a Mexican

hat type function with a ring of degenerate minima. The phase of the order

parameter is then a specific point on this degenerate ring of minima. This is

a key point in understanding the Anderson-Higgs mechanism and the associ-

ated Goldstone modes of a superconductor, however, we do not address this

mechanism here.

1.6.2.2 Intertwined Orders

We now know that even without a microscopic interpretation of superconduc-

tivity, insights can be gained from this Ginzburg-Landau approach. This is

particularly useful in systems with intertwined forms of electronic order such

as superconductivity, pair density waves, charge density waves, spin density

waves, etc.36. We focus then on the preserved and broken symmetries of the

system in the presence of different order parameters. Considering charge den-

sity wave order of the form

ρQi
(r) = ρ(r)eiQi·r + ρ∗(r)e−iQi·r (1.66)
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Figure 1.6: a Ginzburg-Landau free energy in the normal state with α = 0.5 >
0 and β = 1. A single minimum at |∆|2 = 0 is indicative of temperatures
T > TC . b Ginzburg-Landau free energy in the superconducting state with
α = −0.5 < 0 and β = 1. Two minima occur at ∓α

β
= 0.5∆. The depth of

these minima correspond to the energy of the upper critical field Hc/8π. This
magnitude is indicated by double-headed yellow arrows. c. Ginzburg-Landau
free energy in the superconducting state fn − fs = −0.5|∆|2 + 0.5|∆|4 with a
complex order parameter of the form ∆eiϕ. A ring of degenerate minima is
indicated by yellow arrows.

and pair density wave order of the form

∆Pi
= ∆Pi

eiPi·r +∆∗
−Pi

e−iPi·r (1.67)

Then both order parameters break translation symmetry, the first to do so

when going from the disordered to ordered phase is the parent order. Further-

more, on entering the superconducting state local U(1) gauge symmetry is also

broken so that the superconducting order parameter acquires a finite phase

|∆| = 0 → |∆| = ∆eiϕ (1.68)

In the presence of all three forms of order; CDW, PDW, and uniform super-

conductivity we can write the Ginzburg-Landau free energy functional as a

sum of the individual orders, their linear coupling, and higher order coupling

terms (H.O.C.T)

F = FS + FC + FP +
∑
i

(λ∗i ρQi
∆∗

S∆Pi
+ λiρ

∗
−Qi

∆S∆
∗
−Pi

) + H.O.C.T (1.69)

Here FS , FC, FP are the free energy densities of the uniform superconductor,

CDW, and PDW respectively. Clearly either spatial modulations of the charge
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or Cooper pairs may couple to the uniform superconductor. To lowest order

there are then two parent-child relationships possible: (1) if ∆S(r) and ∆P (r)

are the dominant orders, they generate charge modulations with the same

wavevector Pi, ρ(r) ∝ ∆∗
S∆Pi

+ ∆∗
−Pi

∆S, and at twice this wavevector 2Pi,

ρ2Pi
∝ ∆∗

−Pi
∆Pi

; (2) if ∆S(r) and ρQi
(r) are the dominant orders, then they

may generate a PDW at wavevector Qi, ∆Qi
∝ ∆∗

SρQi
. The coupling between

these order parameters makes determining their exact relationship incredibly

difficult. Determining the parent-child relationship between PDW and CDW

order is critically important in the cuprates as these phases are likely connected

to the formation of the high-temperature superconductor29. However, these

interactions are quite universal and these forms of intertwined order may occur

in any strongly correlated superconducting material.

While this analysis gives intuition regarding the wavevector of the in-

duced/parent order, it does nothing to tell us about the phase relationship

between these orders. For this a microscopic model of the specific system is

required which has not been derived for UTe2 and is beyond the scope of this

thesis.



Chapter 2

Spectroscopic Imaging Scanning

Tunnelling Microscopy

(SI-STM)

2.1 Introduction

The invention of the scanning tunnelling microscope (STM) in 198237 signalled

the beginning of atomic manipulation and measurement. Since then it has be-

come a canonical probe of condensed matter systems due its unprecedented

spatial and energy resolution. Excitingly, the limits of this experimental tool

are frequently expanded with modern techniques such as scanned-Josephson

tunnelling microscopy29, electronic shot noise spectroscopy38, spin-polarized

tunnelling microscopy39, and many others. All of the experimental work pre-

sented in this thesis was measured using an STM so we will now discuss the

basic operating principles of such machines and outline the range of experi-

mental techniques relevant to this thesis.

2.2 Tunnelling Currents

While cryogenic and vacuum systems may vary from machine to machine the

core component of the STM is the scan head. Here is housed two electrodes, a

sharp scan tip and the sample material to be studied. When kept at incredibly

small separations ( 10−10m = 1Å) their electronic wavefunctions overlap to

allow a measurable tunnelling current to pass across the insulating barrier. To

begin then, we discuss the details of tunnelling current measurements and how

36
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they can be used to reveal surface topography and electronic structure.

The standard theoretical description of such an experimental configuration

is that provided by Bardeen40. In the description outlined below we follow the

assumptions and approach of Bardeen as outlined in Ref.[41] and Ref.[42].

We first consider solving the stationary Schrödinger equation for two sub-

systems, which in this case are the STM tip and the sample under study. We

then calculate the transmission rate for electrons using time-dependent per-

turbation theory. In three dimensions the Schrödinger equation of the sample

is (
− ℏ2

2m
∇2 + US

)
ψµ = Eµψµ (2.1)

and for the STM tip (
− ℏ2

2m
∇2 + UT

)
χν = Eνχν (2.2)

The eigenfunctions of these equations describe the spatial dependence of more

general time-dependent stationary states, which are themselves solutions of

separate time-dependent Schrödinger equations for these systems. Such that

Ψµ = ψµe
−iEµt/ℏ (2.3)

is a solution of

iℏ
∂Ψµ

∂t
=

[
− ℏ2

2m
∇2 + US

]
(2.4)

and a solution of the same form can be written for χν . By reducing the tip-

sample distance, the two states are no longer independent and the combined

Schrodinger equation must be solved. To do so, we make the key approximation

that the two wavefunctions are approximately orthogonal∫
ψ∗
µχνd

3r ≈ 0 (2.5)

and in doing so we can assume a solution to the combined Schrödinger equation

iℏ
∂Ψ

∂t
=

[
− ℏ2

2m
∇2 + US + UT

]
Ψ (2.6)

of the form

Ψ = aµ(t)ψµe
−iEµt/ℏ +

∞∑
ν=1

cν(t)χνe
−iEνt/ℏ (2.7)
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The prefactors, aµ(t) and cν(t), describe the probability of electron transfer

as a function of time. Thus as t → −∞, aµ(−∞) = 1 and cν(−∞) = 0

however as the tip-sample distance is reduced these states evolve due to the

time dependence of UT . Because electron dynamics occur with a time constant

of the order of femtoseconds (10−15 s) we can consider adiabatic changes in UT

as the time needed to move the tip is of the order of seconds.

UT (t) = eηt/ℏUT , η > 0 (2.8)

Now inserting Eq.2.7 into Eq.2.6, projecting onto the state χν , and considering

only the first order perturbation theory contributions we obtain

iℏ
dcν(t)

dt
= ⟨χν |UT |ψµ⟩ e−i(Eλ−Eν+iη)t/ℏ (2.9)

This projection of sample states to tip states is the key concept of tunnelling

and is often expressed using the tunnelling matrix element

Mµν = ⟨ψµ|UT |χν⟩ (2.10)

Using this notation and integrating over time we arrive at the expression

cν(t) =Mµν
e−i(Eµ−Eν+iη)t/ℏ

Eµ − Eν + iη
(2.11)

The magnitude of this expression, |cν(t)|2 per unit time, or d||cν(t)|2
dt

gives the

tunnelling probability per unit time, Pµν(t)

Pµν(t) = |Mµν |2
2η

ℏ
[
(Eµ − Eν)

2 + η2
] (2.12)

Taking the limit of η → 0 we obtain

Pµν(t) =
2π

ℏ
δ(Eµ − Eν)|Mµν |2 (2.13)

This is the same expression as that obtained by Dirac43 but which is more com-

monly referred to as Fermi’s Golden Rule. The tunnelling current I is then

proportional to ePµν and by including finite temperature effects and introduc-

ing a factor of 2 for electron spin states we obtain the following expression for
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the net tunnelling current

I =
4πe

ℏ
∑
νµ

[
f(Eµ − ES

F )− f(Eν − ET
F )
]
|Mµν |2δ (Eν − Eµ − eV ) (2.14)

Converting the discrete sum of states to an integral over the density of states

(DOS) for the tip and sample, nT and nS respectively we obtain

I =
4πe

ℏ

∫ eV

0

[
f(ET

F − eV + ϵ)− f(ES
F + ϵ)

]
(2.15)

×nT (ET
F − eV + ϵ)nS(ES

F + ϵ)|M(ES
F + ϵ, ET

F − eV + ϵ)|2dϵ (2.16)

Thus, by providing a bias voltage V we shift the electron occupancy in the tip

or sample allowing the transfer of electrons/holes from occupied to unoccupied

states or vice versa via tunnelling.

Finally, we must address the structure of the tunnelling matrix elements.

This term depends strongly on the spatial configuration of the tunnelling elec-

tron states which, as in atomic physics, are frequently expanded in terms of

spherical harmonic functions. A tip wavefunction χ(r) is then expressed as

χ(r) =
∑
l,m

Cl,mfl,m(κρ)Yl,m(θ, ϕ) (2.17)

where ρ = |r−r0|, κ =
√
2mϕ
ℏ is the decay constant which depends on the work

function ϕ, and r0 is the center of the apex atom of the tip. The same expansion

can also be used for the sample states ψ(r). We assume some separation plane

between the tip and sample, at which point the wavefunction of both tip and

sample is negligible. For states near the Fermi level we can then write the

following Schrödinger equation

∇2χ(r) = κ2χ(r) (2.18)

Inserting Eq.2.17 into Eq.2.18 we obtain the following differential equation for

the radial component, in which u = κρ.

d

du

(
u2
df(u)

du

)
−
[
u2 + l(l + 1)

]
f(u) = 0 (2.19)

The solutions for such equations are the spherical modified Bessel functions,

particularly, kl(u) satisfies the appropriate boundary conditions. These func-
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tions always contain a e−u = e−κρ term. This explains a crucial working

principle of STM, the tunnelling current observes a decaying exponential de-

pendence on tip-sample distance. While the exact form of this dependence

varies depending on tip and sample wavefunctions, this decaying exponential

is always observed and can be directly measured in experiment.

In fact, this exponential dependence on tip-sample distance is a key result

which helps to explain the ability of STM scan tips to resolve individual atomic

sites on the sample surface. However such resolution is not guaranteed as tip

preparation techniques such as electrochemical etching or controlled crashing

are nearly always needed to achieve high resolution tips.

2.3 Topography

After developing an understanding of the main observable in STM, the tun-

nelling current, we can now investigate the varying operational modes of such

instruments. The most straightforward of which is topographic imaging. Us-

ing a PID feedback system, we can control the STM tip to maintain a constant

tunnelling current while scanning the sample surface. As such measurements

are typically carried out within a small energy range around the Fermi level,

typically in the meV-eV range, we can assume that the tip DOS is constant

and that the tunnelling matrix elements do not change appreciably. Further-

more, all measurements reported herein are performed at T < 4.2K, at such

temperatures we can assume a near step-like Fermi distribution. Thus we can

express the simplified tunnelling current as

I(r, V ) = Ce
−T (r)

T0

∫ eV

0

nS(r, E)dE (2.20)

where E is measured in reference to the Fermi energy EF and the constant C

absorbs the constants associated with a flat tip DOS and constant tunnelling

matrix element amplitude. By establishing a constant setup current for the

feedback system, Is and with a constant bias voltage, Vb we can measure a

topographic image which mathematically is expressed as

T (r, Vb) = T0 ln

[
Is∫ eVb

0
nS(r, E)dE

]
+ const. (2.21)
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Figure 2.1: Example topographic image recorded at the (0 -1 1) surface of
UTe2 revealing chains of tellurium atoms which run along the crystal a di-
rection (Vb = 30 mV, Is = 500 pA). The inset is recorded in a 4 nm square
FOV. The presence of two inequivalent tellurium sites is clearly resolved thus
demonstrating atomic resolution (Vb = 5 mV, Is = 3 nA).

The measured topographs can be thought of as a relief map of the crystal

surface. In reality, it is of course a measure of the integrated DOS, however, the

measurement’s dependence on tip-sample distance typically exceeds variations

in the DOS. Topographs are therefore presented in units of distance, where

the vertical distance has been calibrated using step edges of known height. An

example of such a topographic image, recorded on the (0 -1 1) cleave surface

of UTe2, is shown in Fig. 2.1 and its inset. Here, chains of tellurium atoms

fill the field of view (FOV), with crystal vacancies visible as dark regions. The

inset exemplifies the high spatial resolution of STM as two sets of Te atoms

are clearly visible. The height difference between these sites is the result of

different inter-bond distances with the subsurface uranium atoms.
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2.4 Spectroscopy

2.4.1 Single Particle Tunnelling

As shown in Eq.2.15 and the simplified Eq.2.20, the tunnelling current allows

access to the DOS of the sample under study. However, a more direct measure

of the DOS is differential conductance or dI
dV

measurement, this is the most

utilized operational procedure in quantum materials studies by STM and will

be frequently referred to throughout. By substitution of Eq.2.21 into the

voltage derivative of Eq.2.20 we obtain a simple expression for the differential

conductance, dI
dV

(r, V ), or g(r, V )

g(r, V ) =
eIsnS(r, V )∫ eVb

0
nS(r, V )dE

(2.22)

which reveals that such measurements are proportional to the local DOS,

nS(r, E). In superconductors with a large energy gap, like the cuprate su-

perconductors, the integral in the denominator of the topographic expression

Eq.2.21 is non-negligible and must be compensated for to allow direct measure

of nS. By choosing Vb such that T (r, Vb) is homogeneous the denominator can

be expressed as a constant and dI
dV

(r, V ) is a direct measure of the local DOS.

If T (r, V ) is heterogeneous and if nS(r, E) is particle-hole symmetric up to the

setpoint voltage, then calculation of g(r,+V )
g(r,−V )

may also reveal variations in the

local DOS. In our case the superconducting energy gap of UTe2 is very small

|∆| ∼ 0.3 meV and the contribution from the integral in the denominator of

Eq. 2.22 is negligible, thus no corrections are needed to account for this “setup

effect”.

While measurements of the tunnelling current and subsequent numerical

differentiation can be used to measure nS(r, E), this method is very sensitive

to electronic and vibrational noise. To circumvent such issues and improve the

signal-to-noise ratio (SNR) of measurement we employ a lock-in amplifier to

apply a sinusoidal modulating voltage of magnitude ∼50-150 µV and measure

the resulting modulation in the tunnelling current. We therefore outline the

procedure for lock-in measurements of dI
dV

below.

As in typical STM junctions, we apply a DC bias voltage, V0 to the tip-

sample junction but now add a modulating voltage of the form Vm(t) =

Vm cos (ωt+ ϕ). The tunnelling current response, expanded in Taylor series,
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is then

I(V0 +Vm(t)) = I(V0)+
dI

dV
|V0Vm cos (ωt+ ϕ)+

1

2

d2I

dV 2
|V0V

2
m cos2 (ωt+ ϕ)+ . . .

(2.23)

A high pass filter is then used to remove the DC component of this current

signal, leaving only the AC terms of the current

I(V0 + Vm(t))filtered =
dI

dV
|V0 cos (ωt+ ϕ) + ... (2.24)

Lock-in amplifiers then multiply this filtered signal by a reference signal pro-

duced at the same frequency as the AC input. This reference signal is a

complex function of the form

Vr(t) = e−iωrt = cos (ωrt)− i sin (ωrt) (2.25)

The mixed signal contains two parts, one modulating at frequency ω−ωr and

another at ω + ωr

Z(t) =
dI

dV
|Vb

[
ei[(ω−ωr)t+ϕ] + e−i[(ω+ωr)t+ϕ]

]
+ ... (2.26)

Should the reference and signal frequency exactly match then we get a pure

DC component in the mixed signal. In any case, the ω − ωr term is small

and subsequent low-pass filtering removes higher frequency terms and extracts

this first-order term of the modulating current to be read as the output of the

lock-in. This output is the differential conductance measurement which, as

shown above, is directly proportional to the local DOS, nS(r, E).

In experiment, this lock-in detection technique is performed once a tunnel

junction with setpoint current and voltage, Is and Vb is established. The scan

tip feedback is then disabled and the tunnel junction voltage is adjusted to

V0, with V0 < Vb. The lock-in provides the voltage modulation and reference

signal to extract the dI
dV

measurement and the tunnel junction voltage V0 is

adjusted to the next value, determined by the STM operator. Performed at

a single point in space above the sample, we then extract the local DOS as a

function of energy dI
dV

(V ) ∝ nS(E). An example of such a measurement using

a superconducting tip on a superconducting Nb crystal is featured in Fig.2.2

and reveals the typical DOS for an s-wave superconductor as in Fig. 1.1c.
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Figure 2.2: Differential conductance, dI
dV

spectrum obtained using a supercon-
ducting Nb tip on a superconducting Nb crystal at T = 0.3 K. The bias voltage
during dI

dV
operation ranges from −5 mV to +5 mV and includes 131 voltage

steps. The junction setup parameters are Vb = 5mV and Is = 500pA. Super-
conducting coherence peaks of the combined s-wave energy gaps are clearly
seen at energies ∆ = ±2.23 meV.

2.4.2 Scanned Josephson Tunnelling Microscopy (SJTM)

2.4.2.1 The Josephson Equations

The operating modes of SI-STM discussed thus far feature only single-particle

states, that is, single holes/electrons are transported via the tunnelling pro-

cess. However, by leveraging the properties of Cooper pair condensates, other

tunnelling processes are possible. In particular, scanned Josephson tunnelling

microscopy (SJTM) provides a direct measure of Cooper pair density on the

surface of a superconductor. This process is made possible by the Joseph-

son effect44 which describes Cooper pair tunnelling as the result of the phase

difference between two Cooper pair condensates.

At zero temperature the Josephson AC and DC Josephson effects can be

derived by considering the coupling between the condensate wavefunctions of

two connected superconductors. We consider for our wavefunctions

ψ1 =
√
N1e

iϕ1 (2.27)

ψ2 =
√
N2e

iϕ2 (2.28)
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where N1,2 and ϕ1,2 are the number of Cooper pairs and the macroscopic phase

of each superconductor respectively. If a finite voltage is applied across the

superconductor junction and there exists some coupling −K between the two,

then one can write a set of two coupled Schrödinger equations

iℏ
∂ψ1

∂t
= (E1 + eV )ψ1 −Kψ2 (2.29)

iℏ
∂ψ2

∂t
= (E2 − eV )ψ1 −Kψ1 (2.30)

Inserting Eq. 2.27 into the above equations and separating into real and imag-

inary parts, we obtain

ℏ
dN1

dt
= −2K

√
N1N2 sin(ϕ2 − ϕ1) (2.31)

ℏ
dN2

dt
= 2K

√
N1N2 sin(ϕ2 − ϕ1) (2.32)

ℏN1
dϕ1

dt
= −eV N1 +K

√
N1N2 cos(ϕ2 − ϕ1) (2.33)

ℏN2
dϕ2

dt
= eV N1 +K

√
N1N2 cos(ϕ2 − ϕ1) (2.34)

Subtracting the two imaginary parts, Eq. 2.33 gives us an expression of

charge conservation between the superconductors. Defining the supercurrent

between them to be Is = −2edN1

dt
= 2edN2

dt
, the phase difference between them

to be Φ = ϕ2 − ϕ1, and the Josephson critical current as IC = 4eK
√
N1N2/ℏ

then gives the familiar expression for the DC Josephson effect

Is = IC sin(Φ) (2.35)

From this we see that a flow of Cooper pairs can be transferred between su-

perconductors with zero voltage between them. Furthermore, by subtracting

the real parts, Eq. 2.33, and realizing that the particular phase of each super-

conductor plays no role we can relabel ϕ2 = Φ/2 and ϕ1 = −Φ/2 and obtain

the AC Josephson equation

ℏ
dΦ

dt
= 2eV (2.36)

Finite voltage therefore changes the phase difference between two supercon-

ductors over time. While modifications to these equations are required for

finite temperature and real circuits, the Josephson effect is a general property
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of superconductors and occurs for systems connected to a superconductor by

a weak link. It is through this effect that the surface of metals can become su-

perconducting by the proximity effect, and it is fundamental to the operation

of superconducting quantum interference devices (SQUIDs), which are some

of the most sensitive magnetometers in operation.

2.4.2.2 SJTM

In STM tunnel junctions finite temperature excitations (kBT ∼ 25µeV) fre-

quently exceed the characteristic Josephson energy EJ = ℏIc
2e

∼ 3µeV thus, in

this phase diffusive regime, the maximum pair current occurs at finite volt-

age45.

IP (V ) =
I2JV Z

2(V 2 + V 2
C)

(2.37)

Where IJ is the DC Josephson current, VC is the voltage at which the maximum

phase-diffusive current is observed, and Z is the effective impedance associated

with re-trapping of the diffusive phase. The maximum current in this case is

then

Im =
I2JZ

4VC
(2.38)

Using the first derivative of Eq.2.37, we can find a simple form for the differ-

ential conductance at zero voltage bias

g(V = 0) =
dIP
dV

|V=0 =
I2JZ

2VC
=

2Im
VC

(2.39)

Finally, we make use of the key relationship that the product ICRN is pro-

portional to the superconducting order parameter amplitude and hence the

Cooper pair density ρS.

ρS(r) ∝ (IJ(r)RN(r))
2 ∝ g(0, r)R2

N(r) (2.40)

We now have two measurable quantities from STM, g(0, r) and RN(r), which

can be used to image the Cooper pair condensate directly. This imaging

method has been used to discover Cooper pair density waves in the cuprate su-

perconductor, Bi2Sr2CaCu2O8+x
29, and more recently in the superconducting

transition metal dichalcogenide NbSe2
46.
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2.5 Quasiparticle Interference Imaging

In his PhD thesis, Louis de Broglie aimed to reconcile the wave nature of light

with the corpuscular theory shown by Einstein to explain the photoelectric

effect. In doing so he hypothesized that all matter has a wave-like nature

associated with it and derived the simple relation for the de Broglie wavelength,

λ = h
p
where p is the particle momentum.

The wave nature of electrons is critical in the application of quasiparticle

interference imaging (QPI) and thus the results presented in this thesis. In a

perfect metal, devoid of impurities or vacancies, the periodic potential of the

crystal lattice results in Bloch solutions to the Schrödinger equation of the

form

ψk(r) = eik·ruk(r) (2.41)

where uk(r) is a periodic function with the same period as the lattice poten-

tial. As discussed in Section 2.4.1, SI-STM can probe the local DOS nS(r, E)

however this quantity provides no k-space information in a pure crystal as

nS(r, E) ∝
∑
k

|ψk(r)|2δ(E − ϵ(k)) =
∑
k

|uk(r)|2 (2.42)

In experiment, no crystal structure is perfect; they feature vacancies, step

edges, impurities, and many other types of disorder. All of these features

result in elastic quasiparticle scattering which mixes eigenstates of the same

energy ϵ(k) but different wavevector k. Considering only scattering between

two Bloch states

nS(r, E) ∝ |ψk1(r) + ψk2(r)|2δ(E − ϵ(k)) = (2.43)

|a1eik1·ruk1(r)|2 + |a2eik2·ruk2(r)|2 +
(
a1a

∗
2uk1(r)u

∗
k2
(r)ei(k1−k2)·r + c.c

)
(2.44)

we find that the local DOS features a dependence on the k-space wavevectors,

q = k1 − k2 and q∗ = k2 − k1. Quasiparticle scattering then introduces

standing waves in the real space nS(r, E), known as Friedel oscillations, with

wavelength λ = 2π
|q| . These oscillations can be clearly measured on crystal

surfaces via differential conductance maps or even in topography, as shown in

Fig. 2.3.

Inferring the scattering wavevectors and their energy dependence from real
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Figure 2.3: Topographic image of the Cu (1 1 1) surface prepared by annealing
and sputtering and obtained using a Nb scan tip. The step edge induces
standing waves of the local DOS which run parallel to its edge. Point defects
cause isotropic modulations at the metallic surface. (Vb = 10 mV, Is = 200
pA)
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space images is impractical. However, Fourier transform of nS(r, E) measured

by differential conductance can reveal the periodicity of nS(r, E) modulations

resulting from the periodicity of the crystal (these are the surface recipro-

cal lattice vectors |qBragg| = 2π
a

where a is a lattice vector), from inter-band

scattering, and from charge density waves.



Chapter 3

UTe2: A Spin Triplet

Superconductor

3.1 Introduction

We now turn to the subject of this thesis, uranium ditelluride, UTe2, which is

a member of the family of heavy-fermion superconductors. First developed in

the late 1970s and throughout the 1980s, these compounds are premier exam-

ples of strongly correlated electronic materials. While some exhibit properties

of a renormalized, heavy-fermion Fermi liquid, others are strongly affected by

the interplay of magnetism, originating from the magnetic moment of heavy

elements and conduction electrons which together produce Kondo lattice sys-

tems47.

Many heavy-fermion systems are also host to unconventional superconduct-

ing states, likely resulting from the nearby presence of magnetic order in their

phase diagrams. Among these heavy-fermion superconductors, UTe2 stands

out as a leading example of odd-parity p-wave superconductivity with a some-

what accessible superconducting transition temperature, Tc ∼ 1.6−2.2 K. The

discovery of a superconductor with odd-parity symmetry promises analogous

discoveries to those made studying the exotic physics of superfluid 3He. We

therefore take time to discuss several key experimental measurements to better

understand the complex physics of p-wave superconductivity.

50
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3.2 Upper Critical Field & P-Wave Pairing

Symmetry

The first indications of spin triplet superconductivity in UTe2 featured in the

paper announcing superconductivity in this system48. In all three crystallo-

graphic directions (Fig. 3.1) the upper critical field Hc2(T ) exceeds that pos-

sible for singlet superconductors as the BCS paramagnetic limit is ∼ Hpara. =

1.86Tc = 4 T49. In the years since, the phase diagram of this compound under

magnetic field has been experimentally measured up to 60T and has revealed

several superconducting phases including a re-entrant phase for fields aligned

between the b and c crystal axes. The low-field, low-temperature phase, SC1

in Fig. 3.1, persists up to at least 15 T for fields along the b axis and may

continue further. Whether SC2 is a separate superconducting phase remains

undetermined. Such a large Hc2/Tc ratio is strongly suggestive of spin triplet

Cooper pairing thus the outstanding question remains - exactly what is the

symmetry and form of this spin triplet superconducting state?

As outlined in Chapter 1, the symmetry of the superconducting order pa-

rameter is related to the irreducible representations of the crystal point sym-

metry group. UTe2’s unit cell is body-centred orthorhombic and is of the point

group D2h. The irreducible representations of this group are featured in Fig.

1.4. Although even parity symmetries are possible, namely A1g, B1g, B2g, and

B3g, these states do not explain the high upper critical field nor the experiments

described below. Thus, we focus on the odd-parity irreducible representations,

Au, B1u, B2u, and B3u. Superconducting states which transform as these irre-

ducible representations are either fully gapped (Au) or feature point nodes in

momentum space aligned with one of the three orthogonal crystal axes c, b,

or a for B1u, B2u, and B3u respectively. The question of fundamental impor-

tance in characterizing the low-field, low-temperature superconducting state is

therefore where on the Fermi surface do these nodes appear? Gaining insight

into the nodal locations has proven extraordinarily difficult, with many groups

reaching different conclusions. Below we outline a small fraction of experi-

ments which seek to answer this question while keeping in mind that, to this

point, there is little agreement in the literature.
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Figure 3.1: a. Schematic crystal structure of UTe2. Its body-centred or-
thorhombic unit cell is indicated by black dashed lines. b. Superconducting
phase diagram under applied magnetic field. The low field, low temperature
SC1 phase is the subject of this report. A non-superconducting field-polarized
(FP) phase is observed at high fields directed around the crystal b axis. Figure
reproduced from Ref. [50].

3.3 NMR Relaxation Rate and Knight Shift

Nuclear magnetic resonance (NMR) is a direct probe of a material’s nuclear

spin interactions with the surrounding environment. Its development has been

crucial to a wide range of fields. Notably, it is the key principle of magnetic

resonance imaging (MRI), and has also been instrumental in the verification

of BCS theory51 and the unconventional superconducting properties of 3He52.

The lack of coherence peaks in the spin lattice relaxation rate, 1/T1, has

been taken as strong evidence of unconventional pairing in several supercon-

ducting compounds, including the cuprates53. Coherence peaks in 1/T1T are

also absent in UTe2 suggesting an unconventional superconducting state54.

Furthermore, early 125Te-NMR measurements found a plateau in 1/T1T which

was proposed as evidence of a multicomponent superconducting order param-

eter. In fact many reports following the discovery of superconductivity in this

system argued evidence for a multicomponent, time-reversal symmetry break-

ing, chiral order parameter55 like those discussed for the A phase of superfluid
3He in Section 1.5. In such a scenario, the order parameter should transform as

a linear combination of D2h irreducible representations such as Au + iB3u. As

we will find later, a multicomponent order parameter in the low temperature,
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low field phase now appears unlikely (see Chapter 6).

Further insights from NMR come from Knight shift measurements. The

Knight shift is the relative shift in NMR frequency which results from the

presence of conduction electrons surrounding nuclear sites. This shift is the

result of the hyperfine coupling between conduction electrons and nuclei and is

therefore altered upon entering the superconducting state. In cooling an s-wave

superconductor the Knight shift falls at Tc and decreases to zero as conduction

electrons around the Fermi surface form spin zero Cooper pairs56. Spin triplet

Cooper pairs have even parity spin wavefunctions and thus unity spin, S = 1.

For d-vectors fixed to a crystal axis, the Cooper pair spin is perpendicular to

this axis and thus the d-vector. The NMR Knight shift is therefore expected

to be unchanged for H⊥d and decrease at the onset of superconductivity for

H∥d. Knight shift measurements of superconductors are therefore taken to

provide information regarding the d-vector orientation and hence the pairing

symmetry. In Ref. [57], the Knight shift of UTe2 is measured across Tc, as

seen in Fig. 3.2b uncoloured, the Knight shift decreases for fields aligned to

the b and c axes but shows no appreciable decrease for fields aligned to the

a axis. This is strongly suggestive of a d-vector constrained to the y-z plane

which transforms as the B3u irreducible representation.

Up to 2022, all UTe2 samples were grown by the chemical vapour transport

(CVT) method, creating samples with Tc ∼ 1.6 K. However, a new generation

of samples grown by the molten salt flux (MSF) method59 are of increased

purity, with residual-resistivity ratios (RRR) as high as 80060. These MSF

crystals exhibit a Tc ∼ 2 K and have altered the conclusions of several experi-

mental measurements such as specific heat C/T 61 and NMR Knight shift. In

Ref. [58], now using a Tc = 2 K sample, the Knight shift is found to decrease

for fields aligned along any crystal axis, see Fig. 3.2b coloured. However,

the lack of coherence peaks in the spin-lattice relaxation rate 1/T1 and the

presence of a finite spin susceptibility in the superconducting state remain in-

dicative of an unconventional pairing state. A simple explanation for Knight

shift reduction in all directions is the fully gapped Au state for which the d-

vector has finite components in each crystal axis. This NMR study further

highlights the difficulties associated with pairing symmetry determination by

Knight shift. As previously discussed the d-vector is pinned to a crystal axis

by spin-orbit coupling, however, external magnetic fields may overwhelm the

spin-orbit effects and allow d-vector rotation as discussed for UTe2 in Refs.
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Figure 3.2: a. The spin triplet order parameter, the d-vector is defined or-
thogonal to the S = 1 spin of the Cooper pair. Upon cooling through Tc the
NMR Knight shift drops to zero for a singlet superconductor. For a triplet
superconductor the Knight shift is expected to decrease for fields aligned with
the d-vector and is unaffected for fields aligned orthogonal to the d-vector. b.
This plot is reproduced from Ref. [58] whose authors find a reduction in the
NMR Knight shift for fields aligned to any of the MSF-grown UTe2 crystal
axes. Coloured plot markers are Knight shift data recorded using MSF-grown
samples. Empty plot markers are obtained from CVT-grown samples.

[62],[63]. In these reports, the Knight shift was found to depend on the ap-

plied external magnetic field, indicating d-vector rotation and shedding light

on the intermediate field phase SC2 in Fig. 3.1. While exact determination of

superconducting pair symmetry has proven difficult in NMR studies of UTe2,

there is agreement on the presence of a p-wave superconducting state with

either nodal B3u or fully-gapped Au symmetry.

3.4 Specific Heat Capacity & Thermal Con-

ductivity

Specific heat capacity measurements are a canonical probe of condensed matter

systems because, at low temperatures, the phononic contribution to specific

heat C ∝ T 3 can be subtracted to reveal the electronic contribution which is

proportional to the density of electronic states. Furthermore, the experimental

value of C/T extrapolated to T → 0 is the Sommerfeld coefficient. For a

second-order phase transition there is necessarily a discontinuity in the specific

heat capacity and this is observed in all superconductors, including UTe2. The
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magnitude of this jump divided by the normal state Sommerfeld coefficient

∆C/γNTc for UTe2 measurements is universally measured to be larger than

that expected for weak-coupling BCS theory, ∆C/γNTc = 1.43, indicative of

superconductivity in the strong coupling regime48.

The peak in specific heat when cooling through Tc results from the intro-

duction of a finite order parameter ∆k. The presence of a non-degenerate,

multi-component order parameter should produce a second peak in Ce. This

was observed for CVT grown samples of UTe2 and taken as evidence of a

chiral p-wave order parameter. Notably, the presence of a finite zero tempera-

ture Sommerfeld coefficient γ0 ∼ γN/2 in early studies of UTe2, has indicated

the presence of unpaired quasiparticle states possibly resulting from a chiral

equal-spin pairing state48. However, the two peaks in specific heat were found

to move together under pressure, suggesting an extrinsic origin64. Further-

more, the introduction of high-purity MSF samples has confirmed the intrinsic

superconducting transition manifests as a single peak in ∆Ce. MSF samples

also show a significant reduction of γ0 ∼ 23 mJ/ mol K261 for samples display-

ing highest RRR. There is therefore little remaining evidence for a chiral order

parameter from specific heat capacity measurements.

Both specific heat and thermal transport measurements support the pres-

ence of point nodes in the low temperature, low field phase of UTe2 supporting

an order parameter which transforms as either B1u, B2u, or B3u. In Ref. [65]

the specific heat capacity was measured under various field orientations. A dip

feature was observed at intermediate fields oriented along the a axis and, upon

rotating this field towards the b axis, Ce/T was found to exhibit peaks which

converge at high fields. These features are indicative of nodal points along

the a axis, thus suggesting an order parameter with symmetry B3u. Evidence

for nodal superconductivity also comes from thermal transport measurements

κ/T 66, in which the field dependence of the residual thermal conductivity κ0

is found to be similar to that observed in other nodal superconductors and

dissimilar to the expected field dependence of a fully gapped state such as Au.

However, more recent thermal transport measurements performed on MSF

grown samples67 have found a weak dependence of κ/T for magnetic fields

aligned along the a and c axes thus suggesting a fully gapped pairing state

as nodal quasiparticles are easily excited and should contribute to thermal

transport at low temperatures and under magnetic field.

Specific heat capacity and thermal transport measurements, like many
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studies of UTe2, have reached several different conclusions. However, as with

the NMR studies discussed above, there is agreement that a chiral supercon-

ducting state is unlikely to be present in this compound.

3.5 Magnetic Penetration Depth &

Topological Surface State Conductivity

We now turn to another experimental technique which has, to this point, been

taken as strong evidence of nodal superconductivity in UTe2, the magnetic

penetration depth. The magnetic penetration depth in the superconducting

state is intimately related to the normalized superfluid density along the i axis,

ni
S(T ) through the relation

nS
i (T ) =

(
λi(0)

λi(T )

)2

(3.1)

Fitting to either this quantity or the effective magnetic penetration depth

λeff(T ) can reveal the presence of nodal excitations, such as point or line nodes

in the superconducting state. This has been used in several studies to argue

for the presence of point nodes in the low-temperature phase of UTe2. In Ref.

[66] the change in effective penetration depth versus temperature ∆λeff(T ) was

measured on CVT grown samples of UTe2 and fit to a power law of the form

aT n + b yielding n values around 2, indicative of point nodes which lie in the

a-b plane of the crystal. These measurements were performed for fields ap-

plied along the c axis, however, new measurements withH along a,b, and c and

using both CVT and MSF crystals have measured the same exponent to be be-

tween 1.76 and 2.11 for several different samples and field orientations68. This

is unexpected for a superconducting order parameter featuring point nodes, as

fields aligned along the nodal direction should exhibit ∆λeff(T ) ∝ T 4. These

authors thus conclude that a chiral order parameter such as B3u+iϵAu best ex-

plains their results. Such a superconducting state should feature nodal points

off the high-symmetry axes whose momentum space position is tuned by the

magnitude of ϵ. From scanning SQUID measurements the magnetic penetra-

tion depth and superfluid density may also be extracted by measuring the local

susceptibility. This is carried out in Ref. [69], and by fitting the superfluid

density using a cylindrical Fermi surface the results are found to be consistent

with point nodes along the a axis indicative of single component order pa-
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rameter with B3u symmetry or a chiral state B3u + iϵAu for sufficiently small

ϵ.

Finally, we highlight the microwave surface impedance measurements of

Ref. [70]. This technique probes the surface impedance of the sample and can

be used to extract the complex conductivity σ̃ = σ1 − iσ2. The imaginary

component of which is related to the effective magnetic penetration depth and

hence the superfluid density. For fields aligned along the crystal c axis the

authors find the temperature dependence of the superfluid density nS(T ) to

follow the expected behaviour of a nodal superconductor with nodes in the a-b

plane. Critically, this report also finds anomalous behaviour of σ1(T ) which

increases monotonically with decreasing temperature. As seen in Fig. 3.3 this

behaviour stands in stark contrast to both conventional (s-wave) and even-

parity unconventional (d -wave) superconducting systems in which the normal

quasiparticle states are rapidly depleted at the onset of superconductivity; so

that σ1(0)
σ1(Tc)

= 0 for an s-wave superconductor and σ1(0)
σ1(Tc)

= 0.1 − 0.3 for a line

nodal dx2−y2 superconductor. The same value for UTe2 is 2.3, thus suggesting

residual quasiparticle states despite measurements from specific heat61 which

rule out bulk unpaired states. While pair breaking processes are expected to

be important for a p-wave superconductor71 in which Anderson’s theorem no

longer holds72, the authors of Ref. [70] fit a modified function for nS(T ) taking

into account bulk scattering rates. In doing so, they find that scattering cannot

explain the unusually large σ1. This large σ1(0)/σ1(Tc) is therefore attributed

to the presence of topological surface states resulting from a chiral or helical

superconducting state.

3.6 Conclusions

While the research outlined above is not exhaustive, we hope it conveys the

flurry of research carried out and ongoing in studies of UTe2 and, most im-

portantly, conveys the difficulties in characterization of unconventional super-

conductors. What should now seem clear, is that UTe2 is a leading candidate

material to host p-wave superconductivity, a state which has only been conclu-

sively identified in the superfluid phases of 3He. While a chiral superconducting

state remains possible, the conclusions derived from measurement have been

altered by the development of high-purity MSF grown samples, and as we

will see below, such a state is incompatible with our STM measurements (See
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Figure 3.3: a. Components of the complex surface conductivity σ̃(T ) =
σ1(T ) − iσ2(T ). σ2(T ) as the magnetic penetration depth decreases at the
onset of a coherent superconducting state. b. The anomalous increase in
σ1(0)/σ1(Tc) is compared to conventional (s-wave) and unconventional (d-
wave) superconducting samples. The observed monotonic increase is unex-
pected for bulk superconducting states but may be explained by the develop-
ment of topological surface states. Figure reproduced from Ref. [70]
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Chapter 6). The superconducting order parameter therefore likely transforms

as a single IR of D2h however, whether this state is fully-gapped (Au) or nodal

(B1u, B2u, B3u) remains to be answered. What remains incontrovertible, is

the place of UTe2 in condensed matter, it has and will remain a material of

significant interest for years to come.



Chapter 4

Discovery of a Pair Density

Wave in UTe2

4.1 Normal Tip Measurements

The discovery of incommensurate charge density waves in UTe2 by SI-STM

signalled the first observation of unusual charge order in this system73. By

Fourier transform of dI
dV

(r, V ) maps the intensity of these three incommensurate

CDWs, (Q1,Q2,Q3), are suppressed under an applied magnetic field similar

to Hc2 for this system. The authors thus proposed the existence of a parent

spin triplet PDW state whose coupling with the background superconductor

produces these unconventional CDWs.

As outlined in Sections 1.6 and 2.4.2, there are two methods to detect

PDW modulations by SI-STM. Firstly by employing SJTM, the Cooper pair

density at the sample surface can be directly visualized, thus modulations

in the Cooper pair density associated with PDWs can be detected directly.

Another method of PDW detection is to track modulations in the supercon-

ducting energy gap across the crystal surface. This energy gap is defined by

the energy separation between the Fermi level and the energy of the super-

conducting coherence peaks (E = ±|∆k|). Mapping this energy modulation

across a crystal surface thus produces a superconducting gap map, henceforth

referred to simply as a gap map. Given that, to this point, no Josephson

signal has been detected by tunnelling experiments in this system, gap map

measurements remain the only method of PDW detection.

With a strategy for PDW detection and motivated by the presence of un-

usual charge order and the possible discovery of a spin triplet PDW we used

60
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ARCHAOS (Appendix A) to cryogenically cleave a CVT-grown sample of UTe2

revealing its (0 -1 1) cleave surface. After selecting a target FOV, shown in

Fig. 4.1a, a gap map was obtained by measurement of dI
dV

(r,∆±). An example
dI
dV

(V ) spectrum is presented in Fig. 4.1b with blue arrows highlighting the

weak superconducting coherence peaks. By fitting a second-order polynomial

function to the positive (∆+) and negative (∆+) coherence peaks, modulations

of the superconducting energy gap, defined as ∆UTe2 =
∆+−∆−

2
, can be visual-

ized across the target FOV. The resulting gap map, ∆UTe2(r) is presented in

Fig. 4.1c. The Fourier transform of this gap map (Fig. 4.1d), reveals three

PDW peaks (P1,P2,P3) with the same incommensurate wavevectors as the

normal state CDW in this system.

While three PDW peaks can be observed in the gap map Fourier transform,

their intensity is very similar to background noise levels. The reason for such a

poor signal-to-noise ratio (SNR) is the difficulty associated with fitting the un-

expectedly weak coherence peaks measured universally on the (0 -1 1) surface

of UTe2. Fig.4.2 (black) features an example dI
dV

(V ) spectrum recorded at 4.2

K, when UTe2 is in the normal state, and at 0.28 K, in the superconducting

state (red). Well below its transition temperature (Tc = 1.6K) the zero-energy

conductance is reduced by only ∼ 10%. While initial samples grown by the

CVT method exhibited a large residual Sommerfeld coefficient improvements

in this sample growth technique, and the advent of MSF-grown crystals, have

shown that this residual DOS is sample dependent74 and no superconducting

samples grown to date have exhibited the bulk residual DOS suggested in SI-

STM measurements. The source of the residual DOS is therefore still unclear.

Both pair breaking processes75 and topological surface states are expected to

be important for odd-parity superconducting states and could both produce

finite DOS at surface terminations.

4.2 Superconducting Tip Characterisation

As discussed above, the shallow coherence peaks of UTe2 make fitting proce-

dures exceptionally difficult and result in poor SNR. To circumvent this issue,

Nb superconducting scan tips were prepared by field emission on a Nb crystal.

The use of such tips is a well-established method of enhancing spectroscopic

energy resolution beyond thermal broadening76,77. To determine the energy

gap of the Nb tip used for measurement, dI
dV

|SIN(V ) spectra were recorded at
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Figure 4.1: (a) Topography of target FOV shown in c. (b) Typical normal
tip dI

dV
spectrum on the (0 -1 1) surface of UTe2. The energy of the fitted

coherence peak is indicated by blue dashed arrows. (c) Superconducting energy
gap modulations ∆UTe2(r) found by fitting to coherence peaks as in b. (d)
Fourier transform of the gap map presented in c, ∆UTe2(q). Surface reciprocal
lattice peaks are highlighted by orange dashed circles. Incommensurate PDW
modulations (P1,P2,P2) are highlighted in red dashed circles
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Figure 4.2: Metallic tip dI
dV

|NIS measurements on the (0 -1 1) cleave surface.
Measurements performed at 4 K, in the normal state, are plotted with black
points. Measurements performed at 0.28 K, in the superconducting state, are
plotted in red

the cleave surface of UTe2 at T = 1.5 K. At this temperature, the super-

conducting gap of UTe2 is closed. An example spectrum is presented in Fig.

4.3. This spectrum is fitted to the phenomenological Dynes model, Eq. 4.1,

which captures pair-breaking processes associated with finite temperature by

introducing a quasiparticle broadening parameter Γ.

N(E) = N0Re

 E + iΓ√
(E + iΓ)2 − ∆̄2

 (4.1)

Here N0 is the normal state DOS at the Fermi level and ∆̄ is the zero-

temperature superconducting energy gap. The experimentally obtained spec-

trum at 1.5 K is well fitted by Eq. 4.1 and we determine |∆| = 1.38 meV and

Γ = 0.11 meV.

Now using our Nb superconducting tip we can lower the temperature of

our SI-STM system to T = 0.28 K. In Eq. 2.15 we found that the tunnelling

current in an STM junction is proportional to the convolution of the tip and

sample DOS. In previous sections we assumed that the tip DOS is flat in the

region surrounding the Fermi level EF however, now using a superconducting

scan tip, this is no longer valid as there is a superconducting energy gap around

EF . The effect of this energy gap on measurement is to push the states of the

sample which were previously within the energy range of the tip gap |∆| =
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Figure 4.3: A typical spectrum measured on the UTe2 (0 -1 1) surface using a
superconducting Nb tip at 1.5K (Is = 100 pA, Vb = 4 mV). At this tempera-
ture, the UTe2 gap is closed, thus the spectrum is a convolution of the nearly
flat DOS of normal UTe2 and the superconducting gap of the Nb tip. The spec-
trum is well fit using the Dynes model with a very weakly anisotropic energy
gap, integrated around k-space, of the form ∆(θk) = 1.38(0.93+0.07 cos (4θk))
in units meV. The fitting parameters of the Dynes model are Γ = 0.11 meV,
|∆̄| = 1.38 meV. To estimate the quality of the fit we calculate the R2 coeffi-
cient, as defined in Appendix Eq. B.2, and find R2 = 0.98
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Figure 4.4: Measured dI
dV

|SIS spectrum obtained using a superconducting
Nb tip on the UTe2 (0 -1 1) crystal surface. Combined coherence peaks
± (∆Nb +∆UTe2) indicated with blue arrows

1.38 meV to the combined gap edge. At T = 0.28 K the superconducting

UTe2 DOS becomes convoluted with the scan tip DOS thus combined Nb-UTe2

coherence peaks appear at energies |∆Nb|+|∆UTe2|. An example of the resulting

tunnelling spectra is featured in Fig. 4.4. The superconducting energy gap of

the Nb tip is a previously measured constant therefore subtracting this value

from the overall spectrum reveals modulations in the energy gap of UTe2.

Doing so for the example spectrum in Fig. 4.4 yields a superconducting energy

gap of ∼ 245 µeV in good agreement with normal tip measurements as in Fig.

4.2.

4.3 Superconducting Tip Gap Map Analysis

The Nb superconducting scan tip permits higher energy resolution measure-

ments, however, due to the enhanced gap size in dI
dV

(V ) measurements, the

combined coherence peaks, whose modulations we wish to track, are now sep-

arated in energy by ∼ 3meV. At the low junction parameters required for

accurate gap map measurements (Vb = 3meV, Is = 2.5nA) the scan tip is
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made unstable when sweeping the bias from the negative to the positive co-

herence peak or vice versa. To resolve this issue, two separate gap maps were

measured at energies around the coherence peaks. To create a complete gap

map we must combine these individual maps. We first match the real space

FOVs. To do so, we will discuss several analysis techniques which rectify

distortions associated with STM measurements at finite temperature.

4.3.1 Shear Correction

An intrinsic issue associated with differential conductance measurements is

that these maps require several days to carry out and some drift of the STM

tip due to temperature variation or vibrations is inevitable over such long

periods. An example of the kind of distortions resulting from this drift can be

seen in the topograph shown in Fig. 4.6a. Clearly the effect of drift in the scan

head is a sheared image of the crystal lattice, in this case the (0 -1 1) surface of

UTe2. This surface is defined by the lattice vectors c∗ and a in the horizontal

and vertical direction respectively. For now, we refer to the horizontal and

vertical axes in this plane as the y and x axes respectively. A shear of p in the

horizontal y direction, as in Fig. 4.6a, modifies the y coordinates to be y− px.

Considering a perfect lattice in 2D of the form

f(x, y) = Re(ei(Qxx+Qyy)) (4.2)

then the effect of a shear of magnitude p produces an image of the form

fs(x, y) = Re(ei(Qxx+Qy(y−px))) = Re(ei(x(Qx−pQy)+yQy)) (4.3)

Thus, the horizontal y components of our wavevectors remain unchanged, while

the x components are moved by an amount −pQy. This has the effect of shift-

ing the reciprocal wavevectors in the x direction. This effect can be clearly in

the topograph, TS(r) recorded simultaneously with the positive energy coher-

ence peak map in Fig. 4.5a. By performing corrections to the simultaneously

obtained topograph we have the benefit of viewing the corrections we make to

the data on the atomic lattice. We can then apply the exact same transforma-

tions to the spectroscopic measurements. The simultaneous topograph in Fig

4.5 features tellurium chains which are clearly sheared and distorted instead

of running in straight lines vertically. Furthermore by Fourier transform of
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TS(r) we obtain TS(q) in Fig. 4.5b. Here the reciprocal lattice wavevectors

are highlighted by dashed orange circles and connected via a dashed red line

to indicate the degree of shear. To unshear our image we note we can express

a shear like that above by the matrix

S(p) =

(
1 0

p 1

)
(4.4)

To shear at an arbitrary angle θ, defined anticlockwise from the horizontal y

axis, we can make use of the rotation matrix to align these wavevectors to the

y axis, shear, then rotate back. Thus a shear acting on an ideal, unsheared

lattice wavevector r1 is defined as

S(p, θ) = R−1(θ)S(p)R(θ)r1 = r2 (4.5)

Using the rotation matrix

R(θ) =

(
cos (θ) − sin (θ)

sin (θ) cos (θ)

)
(4.6)

We obtain the shear matrix

S(p, θ) =

(
1− p cos (θ) sin (θ) p sin2 (θ)

−p cos2 (θ) 1 + p cos (θ) sin (θ)

)
(4.7)

To correct our shear we just perform the opposite operation. Rotate our data

to the y axis, unshear, and rotate back by the same angle θ. Our original

wavevector r1 is recovered by the operation R−1(θ)S−1(p)R(θ)r2 where r2 is

the wavevector of our sheared or experimental data.

For a distorted triangular lattice, like that of the (0 -1 1) surface of UTe2,

we write the reciprocal lattice vector coordinates as below

Q =

Q1

Q2

Q3

 =



q0 cos (α)

q0 sin (α)

1.9q0 cos (α + 74◦)

1.9q0 sin (α + 74◦)

1.9q0 cos (α + 106◦)

1.9q0 sin (α + 106◦)


(4.8)
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Reversing the shear involves finding the roots of the below equations in which

we have set the coordinates of the sheared reciprocal lattice wavevectors to

the average reciprocal lattice wavevector, ⟨q0⟩ =
√∑

i=1−3 Q
2
i

3
. By solving these

equations for just two of our reciprocal lattice peaks we can correct the entire

image as the shear is a global transformation.

Q̃1 =

(
q0 cos (α) + pq0 sin (θ) cos (θ − α)

q0 sin (α)− pq0 cos (θ) cos (θ − α)

)
= ⟨q0⟩ (4.9)

Q̃2 =

(
1.9q0 cos (α + 74◦) + 1.9pq0 sin (θ) cos (θ − α− 74◦)

1.9q0 sin (α + 74◦)− 1.9pq0 cos (θ) cos (θ − α− 74◦)

)
= ⟨q0⟩ (4.10)

This is a system of four equations with four unknowns, q0, p, θ, and α which

can be solved for numerically. Performing this procedure on the topograph

featured in Fig. 4.5a yields TSC(r) in Fig. 4.5c. Now we see that the rows

of tellurium atoms are arranged vertically, and from Fourier transform of this

topograph TSC(q), we find the reciprocal lattice peaks are unsheared (Fig.

4.5d). While shear correction is an incredibly useful technique in correcting

distortions, it is a global transformation applied to the entire image. To correct

local distortions we must learn to extract the phase of our peaks in the Fourier

transform.

4.3.2 Phase Extraction & the Lock-In Method

After shear correction of our STM data we are still unable to exactly match

our coherence peak map field of views. To do so will require the use of the

LF algorithm which, as we see from previous studies, see Ref.[28], have made

use of Fourier analysis to compare the real space phase of CDWs and PDWs.

We aim to do the same and thus require some method of extracting the phase

of individual signals from our data. To do so we make use of the principles

of lock-in detection as outlined in Section 2.4.1, however, we now apply these

same principles numerically to extract the phase information of our signal. To

begin we model the desired signal as an arbitrary real space modulation of

magnitude A

f(r) = A cos(Q · r+ ϕ) (4.11)

where the added phase term ϕ acts to offset the crest of the wave by ϕ/Q

towards the −Q direction. We consider a simple one-dimensional model first
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Figure 4.5: a. Topograph TS(r) obtained simultaneously with the positive co-
herence peak map (Fig. 4.9). b. Fourier transform of a, TS(q). Six reciprocal
lattice wavevectors are highlighted in dashed orange circles. The degree of
shear is indicated by red dashed lines. Reversing this shear moves the recip-
rocal lattice wavevectors in the direction indicated by red arrows. c. Shear
corrected topograph TSC(r). d. Fourier transform of the shear corrected to-
pograph TSC(q). Red dashed lines connect highest intensity pixels of the
reciprocal lattice wavevectors. That these peaks are now level indicates that
the image has been unsheared.
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and multiply this one-dimensional signal by a reference signal of the same

periodicity. Finally we integrate the result over the real space length −L/2 to

L/2.

Aq =

∫ L/2

−L/2

f(x)eiqxdx (4.12)

=

∫ L/2

−L/2

A cos(qx+ ϕ)eiqxdx (4.13)

= A

∫ L/2

−L/2

[
ei(qx+ϕ) + e−i(qx+ϕ)

]
eiqx (4.14)

=
AL

2
eiϕ (4.15)

As the left hand term above is a quickly oscillating, symmetric function over

the integration limits, this term goes to zero leaving only the phase term of

the input signal. Thus, the phase component of the input signal can be found

by ϕ = tan−1
(

Im(Aq)

Re(Aq)

)
. Note also that we can extract the amplitude, A of our

input signal allowing us to extract amplitude and phase maps for arbitrary

wavevectors. In two dimensions we can replace the integration limits by a

Gaussian centred on r, so that we perform the following

AQ(r) =

∫
A(r) cos (Q · r+ ϕ(r))e−iQ·Re−

(r−R)2

2σ2 dR (4.16)

Here we use the variables R and r to differentiate between the integration

window and real space location respectively. In order to improve the compu-

tational time required for the filtering procedure, we carry out these operations

in q-space by Fourier transforming the product of input and reference signals

AQ(q) =

∫
f(R)eiQ·Reiq·re−

(r−R)2

2σ2 drdR (4.17)

Rearranging this equation and substituting x = r−R we arrive at

AQ(q) =

∫
f(R)eiQ·re−iq·RdR

∫
e−iq·xe−

x2

2σ2 dx (4.18)

The left term of the above is simply the Fourier transform of our input signal

multiplied by the reference signal. This shifts the desired Q component to the

origin of q-space. This is then filtered by the Fourier transform of the Gaussian

as seen in the right-hand integral. The filter width in this q-space represen-
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Figure 4.6: a. Phase map ϕ(r) of the horizontal reciprocal lattice wavevector
(0,2π

c∗ ). b. Real part of the horizontal reciprocal lattice wavevector, TQc∗(r).
Horizontally aligned rows of intensity are indicative of the tellurium chain
periodicity on the (0 -1 1) surface of UTe2.

tation, σ is related to the real space filter width by, σq ∝ 1/σr. This filter

width plays a critical role in inverse Fourier filtration, too large and unwanted

wavevectors are captured in the filtration, too small and we lose important

information from the real space signal. Correct filtering thus requires a degree

of trial and error to capture the real space behaviour.

To best illustrate these procedures, we take TSC(r) above, after shear cor-

rection. Using the above lock-in algorithm, we select the horizontal reciprocal

lattice peak at (0,2π
c∗ ) and, using a Gaussian filter of real space radius σr = 1.3

nm, we can inverse Fourier filter this reciprocal lattice peak. Fig. 4.6a shows

the phase map ϕ(r) produced using this process while Fig. 4.6b is the real

part of the inverse Fourier filtered signal. Comparing Fig. 4.5b with Fig. 4.6b

one can see the periodicity of the tellurium chains is captured by the maxima

of the inverse Fourier filtered signal TQc∗(r).
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4.3.3 Lawler-Fujita Algorithm

The final step required to match our two data sets is to apply the Lawler-

Fujita (LF) algorithm. This algorithm, which was introduced in Ref [78] to

extract intra-unit cell phase information in Bi2Sr2CaCu2O8+δ, is extremely use-

ful when registering multiple data sets recorded in the same FOV. High spatial

and energy resolution, g(r, V ) maps can take up to 3 days of continuous mea-

surement. During this time, mechanical noise or temperature variations can

cause distortions in the resulting image which do not reflect the atomic struc-

ture and which cannot be corrected for via a global transformation, like that

used in shear correction. These distortions manifest themselves as smearing of

the reciprocal lattice wavevectors in q-space. Continuing the procedure above,

we consider applying this algorithm to the shear corrected topograph TSC(r)

obtained simultaneously with the positive coherence peak map. To understand

the LF algorithm we start with a lattice of the form

T =
n∑

j=1

Tj cos (Qj · [r+ uj(r)]) (4.19)

=
n∑

j=1

Tj cos (Qj · r+ θj(r)) (4.20)

where j sums over the number of reciprocal lattice wavevectors to be consid-

ered, Qj are the magnitude of these wavevectors, and the vector field uj(r)

represents the distortion field. Thus, for a perfect lattice, uj and θj are con-

stant. We consider the distorted lattice to be the same as the perfect one with

a change of coordinates so that

Qj · r+ θj(r) = Qj · r̃+ θ̄j(r) (4.21)

where r̃ = r−u(r). From this, we can derive an expression for the displacement

field using

u(r) = Q−1(θ̄(r)− θr) (4.22)

The right-hand side of this equation can be derived solely from the input

topograph/map as Q =

QT
1

QT
2

QT
3

 is simply the magnitude of the reciprocal
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Figure 4.7: a. Topograph T+(r) of the UTe2 (0 -1 1) surface after shear
correction, LF correction, and interpolation. b. Fourier transform of a, T+(q).
Surface reciprocal lattice wavevectors are indicated by dashed orange circles.
Dashed red lines indicate the absence of shears and distortions previously seen
in the untreated data (Fig. 4.5a)

lattice wavevectors in q-space, θ̄(r) =

θ̄
T
1 (r)

θ̄T2 (r)

θ̄T3 (r)

 is the corrected phase, and

θ(r) =

θ
T
1 (r)

θT2 (r)

θT3 (r)

 is the initial phase of the topograph/map’s reciprocal lattice

wavevectors and can be extracted by the lock-in technique described above.

Finally, the image is corrected using the GRIDDATA function of Matlab which

fits the distortion field u(r) to the data and interpolates it to produce the

undistorted image.

To demonstrate the effect of the LF algorithm, we continue to use the

topograph seen in Fig. 4.6a. The topograph after applying the LF algorithm

and interpolated for clarity is featured as, T+(r) in Fig. 4.7a. From comparison

with Fig. 4.5b we can see that the image after shear and LF correction is

much more ordered. From the topograph’s Fourier transform T+(q), we see

that the reciprocal lattice wavevectors are less disperse than the initial image

and connecting these peaks forms a distorted hexagon, as expected for UTe2.
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4.4 PDW Discovery & Phase Analysis

4.4.1 PDW Discovery

Now that we can correct experiment-related distortions from our data, we can

match the FOV of our two coherence peak maps and generate a complete

gap map. In Fig. 4.8a and b we present the distortion corrected topographs,

T+(r), T−(r), recorded with the coherence peak differential conductance maps.

These topographs have been shear and LF corrected then cropped so that their

FOV matches very closely. We can check how closely by calculating the cross

correlation (XCORR) between them. For two images I1 and I2 the XCORR is

X(r, I1, I2) =

∫
I∗1 (r1)I2(r+ r1)dr1√∫

|I1(r1)|2dr1
∫
|I2(r2)|2dr2

(4.23)

where the denominator normalizes the function so that two identical images

I1 and I2 produce a peak, at the centre of X(r, I1, I2), of magnitude one.

Upon calculating XCORR for our two topographs we obtain a single pixel

peak centred at (0,0) of magnitude 0.93, indicative of registration to within

one pixel or approximately 58 pm.

Now that we have matched the FOVs of the simultaneously recorded to-

pographs we can apply the same distortion corrections and transformations to

the coherence peak data set. The resulting coherence peak maps, E+(r) and

E−(r), show clearly that the coherence peak maxima occur between tellurium

chains. Subtracting the tip gap from both coherence peak maps generates

maps of the UTe2 coherence peaks, ∆±(r) = |E±(r)| − |∆tip|. As the super-

conducting energy gap is defined in reference to the Fermi level we calculate

∆UTe2 = |∆+(r)|−|∆−(r)|
2

and finally, by subtracting the average gap value over

the FOV, we obtain our gap map image δ∆(r) = ∆UTe2 − ⟨∆UTe2(r)⟩. This

gap map, δ∆(r) is presented in Fig. 4.9a and its Fourier transform, δ∆(q) is

presented in Fig. 4.9b. Three peaks, highlighted by dashed red circles, are

observed at the same incommensurate q-space locations as the CDW in Ref.

[73] and the PDW in Fig. 4.1d. Crucially, the use of the superconducting

tip data ensures that the PDW peaks observed exhibit an enhanced signal-

to-noise ratio owing to the better fit quality of superconducting tip gap maps

(Appendix B). This map therefore represents the first detection of PDWs in

this system.
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Figure 4.8: a. Topograph recorded simultaneously with the positive energy
coherence peak map, T+(r). b. Topograph recorded with the negative energy
coherence peak map, T−(r). c. Cross-correlation function evaluated for T+(r)
and T−(r). A maxima of 0.93 at (0,0) is only a single pixel wide indicative
of closely matched FOVs in T+(r) and T−(r). d. Positive energy coherence
peak map obtained by parabolic fitting, E+(r). e. Negative energy coherence
peak map, E−(r). e. Cross correlation of coherence peak maps E±(r). A
single-pixel wide maximum of 0.92 is observed at (0,0)



76

Figure 4.9: a. Gap map δ∆(r) of the UTe2 (0 -1 1) surface obtained after
distortion correction, interpolation, and image registration. b. δ∆(q), the
Fourier transform of δ∆(r). Dashed orange circles highlight the surface recip-
rocal lattice wavevectors. Dashed red circles highlight the newly discovered
PDW wavevectors, labelled P1,P2,P3.
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4.4.2 Interplay of CDW and PDW

Now, equipped with tools allowing exact registration and phase extraction of

differential conductance images, we can study the interplay of the CDW phase

with that of the PDW. To do so we record a CDW map at T = 4K in an

overlapping FOV to Fig. 4.8a above and apply shear correction and the LF

algorithm so that we can register the CDW map to our new gap map. The

resulting map g(r,−9mV) is shown in Fig. 4.10a and its Fourier transform,

g(q,−9mV) is shown in Fig. 4.10b revealing the three CDW wavevectors in

blue dashed circles.

Next, using the lock-in method, we select just the CDW peaks from our

CDW map and the PDW peaks from our gap map and extract the real compo-

nent of the signal and its phase. The CDW peaks (Q1, Q2, Q3) are highlighted

in blue dashed circles in Fig. 4.10b and the inverse Fourier filtration is per-

formed with a filter width σr = 1.14 nm. The same filter width is also used

to extract information from the PDW peaks (P1,P2, P3) in Fig. 4.8b. Af-

ter extracting the individual real components of the inverse Fourier transform

for each CDW/PDW wavevector the real space maps of Q1, Q2, and Q3 are

added together to produce the CDW/PDW maps shown in Fig. 4.10c and Fig.

4.10d respectively. We label the CDW map, gQ(r,−9meV) and the PDW map,

δ∆P (r). We note that these density waves appear to be approximately nega-

tive images of each other, suggesting that there is a substantial phase difference

between them. To better understand this phase relationship, we extract the

phase map of each CDW/PDW component and calculate the phase difference

between them |δϕi(r)| = |ϕP
i (r) − ϕC

i (r)|. We can then plot this phase dif-

ference in histogram format and find a distribution of phase differences. This

distribution is shown in Fig. 4.10e and clearly demonstrates that the CDW

and PDW are approximately π out of phase with δ∆RMS(r) = 0.96π.

4.5 Parent Order & Triplet PDW

In Section 4.1 we motivated the search for a PDW in UTe2 by the opportu-

nity to observe a PDW whose coupling to the bulk order parameter should

induce a CDW. We refer to such a PDW as the parent form of order and the

subsequent CDW as the daughter order. While we have no definitive con-

clusion regarding this parent-daughter relationship we can speculate from the

observed facts. While Ref. [73] proposes parent PDW order to explain the
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Figure 4.10: a. Differential conductance map, g(r,−9meV), recorded at T = 4
K and registered to the gap map FOV. b. Fourier transform of a, g(q,−9meV).
The three CDW peaks to be inverse Fourier filtered are Q1, Q2, Q3 highlighted
in blue dashed circles. c. Real part of the inverse Fourier transform of Q1 +
Q2+Q3, gQ(r,−9meV). A filter width of σr = 1.14 nm is used in filtration. d.
Real part of the inverse Fourier transform of δ∆(r) featuring P1 +P2 +P3. e
Histogram counting the phase difference between CDW and PDWmodulations
at each pixel in the FOV. Phase difference at position r is defined as |δϕi(r)| =
|ϕP

i (r)− ϕC
i (r)|
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magnetic field dependence of the CDW it is not clear how such a PDW, form-

ing below Tc = 1.6K may induce a CDW whose onset temperature is between

4.5 K and 10 K. Furthermore the PDW modulations reported herein are of

magnitude 10µeV while the CDW modulations can be detected up to 25 meV.

The most plausible mechanism connecting these two orders is therefore one

in which superconductivity emerges in the presence of a normal state CDW

thereby inducing PDW modulations at the same wavevectors. Such a scenario

is at odds with the proposal of Ref. [73] however, as pointed out in Section

1.6.2.2, it is a natural consequence of the interaction between a pre-existing

CDW and bulk superconductivity.

Even if the phenomena discovered in Ref. [30] and Ref. [73] are, in fact,

produced by the interplay of uniform superconductivity and charge order they

remain important in the broader context of PDW detection. As we discussed

extensively in Chapter 3, UTe2 is, in all likelihood, a p-wave superconductor.

Thus formation of a PDW within a uniform p-wave superconducting state

suggests the exciting possibility that such a PDW is composed of spin triplet

Cooper pairs. Thus Ref. [30] extends the surprising conclusion inferred from

previous reports, such as Refs. [29], [28], and [79], that PDWs are a ubiquitous

phase of superconducting order in real material systems.



Chapter 5

Andreev Reflection,

Andreev Bound States,

& Topological

Superconductivity

5.1 Introduction

The use of superconducting scan tips to measure the surface electronic struc-

ture of UTe2 helped greatly in discovering the presence of a weak PDW on

the (0 -1 1) surface. In Chapters 6 and 7 we will see that the superconduct-

ing scan tip encourages Andreev transport of low-energy quasiparticle states.

These Andreev effects are a direct consequence of particle-hole hybridization

made possible by the superconducting pair potential. This hybridization was

alluded to in our discussion of the Bogoliubov transformation in Section 1.3.

We will now discuss this transformation again, this time in greater depth, as

it is critical in deriving the Bogoliubov-de Gennes equations. We will then see

how a single Andreev reflection can take place at the surface of a supercon-

ductor. Where appropriate, we make modifications to our s-wave formalism to

model some properties of p-wave superconductors, including the conductance

between a normal metal and p-wave superconductor separated by an insulating

barrier, as well as discussion of Andreev bound states (ABSs). These bound

states have been observed in several superconducting systems including the

cuprate superconductors80 but are especially relevant to p-wave superconduc-

tors where they should be present on almost all crystal surfaces. These states

80
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have a close relationship to topological surface states, proposed to exist on

the surfaces of p-wave superconductors with non-trivial band topology. We

therefore conclude with a brief overview of topological classification methods

for superconductors as there is extensive literature discussing the non-trivial

topology of UTe2.

5.2 Bogoliubov-deGennes Equations

The Bogoliubov-de Gennes (BdG) equations have been powerful tools in un-

derstanding the behaviour of single-particle excitations in superconductors.

Upon entering the superconducting state the hybridization of electrons and

holes modifies the electronic band structure around the Fermi level making

descriptions of the new Bogoiubov quasiparticle dynamics difficult, particu-

larly in the case of an inhomogeneous system. In experiment, there are many

ways a superconductor may be inhomogeneous; there are inevitably impuri-

ties throughout the crystal which can cause resonant scattering of Bogoliubov

quasiparticles at low energies81, in the presence of a magnetic field Abrikosov

vortices locally suppress superconductivity and form a lattice of normal-state

vortex cores82, and even the crystal surface should modify the single-particle

excitation spectrum83. In all these cases, the BdG equations and the associ-

ated theoretical framework are the best tools condensed matter physicists have

in describing these effects. We begin, as in Section 1.3 by studying the BCS

mean-field Hamiltonian which we now write in real space as

HMF =

∫
dr
∑
α,β

ψ†
β(r)ξ(r)ψα(r)

+

∫ ∫
drdr′ψ†

↑(r)∆(r, r′)ψ†
↓(r

′) + ψ↓(r)∆
∗(r, r′)ψ↑(r

′)

+

∫ ∫
drdr′

∑
α,β

∆α,β(r, r
′)⟨ψ†

α(r)ψ
†
β(r

′)⟩

(5.1)

Where we define ξ(r) = − ℏ2
2m

∇2
r − EF as the normal state kinetic energy and

∆α,β(r, r
′) = −g(r − r′)⟨ψα(r

′)ψβ(r)⟩ as the superconducting pair potential

with g(r − r′) acting as the attractive interaction84. Note also that these

quasiparticle wavefunctions are related to the operator ck,α used in Section 1.3

by ψα(r) =
∑

k e
ik·rck,α. Key to the Bogoliubov-de Gennes approach is that we

can introduce some redundancy into the mean-field Hamiltonian by separating



82

the mean-field Hamiltonian, HMF, into particle and hole sectors. Using the

anti-commutation relation for fermions, {ψσ(r), ψ
†
σ′(r′)} = δ(r− r′)δαβ, on the

normal state part of the Hamiltonian H0, we get

H0 =

∫
dr
∑
α,β

ψ†
α(r)ξα,β(r)ψβ(r)

=
1

2

∫
dr
∑
α,β

[
ψ†
α(r)ξα,β(r)ψβ(r)− ψα(r)ξ

∗
α,β(r)ψ

†
β(r)

]
+

1

2

∑
α,β

∫
drξα,β(r)

(5.2)

The third line of Eq. 5.1 is made up of expectation values and we therefore

ignore it for now. Taking the second line of HMF, which we refer to as HS,

and using the anti-commutation relation, {ψ†
σ(r), ψ

†
σ′(r′)} = 0 we obtain the

following

HS =
1

2

[∫
drψ†

↑(r)∆(r)ψ†
↓(r)− ψ†

↓(r)∆(r)ψ†
↑(r)

+ ψ↓(r)∆
∗(r)ψ↑(r)− ψ↑(r)∆

∗(r)ψ↓(r)

]
(5.3)

This separation then allows us to easily write the mean-field Hamiltonian in

matrix form by making use of a four-component spinor so that we write

HMF =
1

2

∫
dr
[
ψ†
↑(r) ψ†

↓(r) ψ↑(r) ψ↓(r)
]
HBdG(r)


ψ↑(r)

ψ↓(r)

ψ†
↑(r)

ψ†
↓(r)

+K (5.4)

We have several constants now, the third line of Eq. 5.1 and the rightmost

term of Eq. 5.2. These constants only act to modify the ground state energy so

we absorb them into the variable K above and, from now on, will ignore these

terms. This new Hamiltonian HBdG is the Bogoliubov-de Gennes Hamiltonian

and it is a 4× 4 matrix due to the spin and electron-hole degrees of freedom.

We write it explicitly below making use of the Pauli matrices σi where we

define σ0 as the two-by-two identity matrix σ0 = I2×2.

HBdG(r) =

[
ξ(r)σ0 ∆(r)iσ2

−∆∗(r)iσ2 −ξ∗(r)σ0

]
(5.5)



83

This Hamiltonian is clearly not diagonalized but it conveniently separates our

electron and hole states. To diagonalize this Hamiltonian we must find some

unitary matrix U such that

U †HBdGU =


En 0 0 0

0 En 0 0

0 0 −En 0

0 0 0 −En

 (5.6)

Here En are the new energy eigenvalues of the single-particle or Bogoliubov

quasiparticle states. This unitary matrix is just the Bogoliubov transformation

we saw previously, written in matrix form. It transforms the normal state

quasiparticle spinor to a spinor of Bogoliubov quasiparticles
ψ↑(r)

ψ↓(r)

ψ†
↑(r)

ψ†
↓(r)

 = U


γn

γn

γ†n

γ†n

 =
∑
n>0


un↑ 0 0 −vn∗↑
0 un↓ vn∗↓ 0

0 −vn↑ un∗↑ 0

vn↓ 0 0 un∗↓



γn

γn

γ†n

γ†n

 (5.7)

Applying this transformation to the mean-field Hamiltonian gets us to the

desired form for the effective Hamiltonian

Heff. =
∑
n

Enγ
†
nγn + Eg (5.8)

where Eg is the ground state energy. This is the same result as we derived

in Eq. 1.34. While previously we saw that Eq. 1.29 fixed the form of our

weighting functions, now we look in more depth at how this diagonalization

fixes the relationship between the weighting functions. This relationship then

determines the Bogoliubov-de Gennes equations. To see this explicitly we first

calculate the commutator of the mean-field Hamiltonian with the normal state
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quasiparticle operators.

[ψ↑(r), HMF] =

∫
drξ↑(r)ψ↑(r) +

∫
dr′∆(r, r′)ψ†

↓(r
′) (5.9a)

[ψ↓(r), HMF] =

∫
drξ↓(r)ψ↓(r)−

∫
dr′∆(r′, r)ψ†

↑(r
′) (5.9b)[

ψ†
↑(r), HMF

]
= −

∫
drξ∗↑(r)ψ

†
↑(r)−

∫
dr′∆∗(r, r′)ψ↓(r

′) (5.9c)[
ψ†
↓(r), HMF

]
= −

∫
drξ∗↓(r)↓ψ

†
↓(r) +

∫
dr′∆∗(r′, r)ψ↓(r

′) (5.9d)

We can calculate the same quantities by replacing the normal state operators

by Eq. 5.7, calculating [ψα(r), Heff.] and
[
ψ†
α(r), Heff.

]
.

[
ψ↑(r), Enγ

†
nγn + Eg

]
= Enu

n
↑γn − Env

n∗
↑ γ

†
n (5.10a)[

ψ↓(r), Enγ
†
nγn + Eg

]
= Enu

n
↓γn − Env

n∗
↓ γ

†
n (5.10b)[

ψ†
↑(r), Enγ

†
nγn + Eg

]
= −Enu

n∗
↑ γ

†
n − Env

n
↑ γn (5.10c)[

ψ↓(r), Enγ
†
nγn + Eg

]
= −Enu

n∗
↓ γ

†
n + Env

n
↓ γn (5.10d)

Upon substitution of Eq. 5.7 into Eq. 5.9 and by comparison with Eq. 5.10

we arrive at the Bogoliubov-de Gennes (BdG) equations∫
drξ↑(r)u

n
↑ (r) +

∫
dr′∆(r, r′)vn↓ (r

′) = Enu
n
↑ (r) (5.11a)∫

drξ↓(r)u
n
↓ (r) +

∫
dr′∆(r′, r)vn↑ (r

′) = Enu
n
↓ (r) (5.11b)∫

dr′∆∗(r, r′)un↓ (r
′)−

∫
drξ∗↑(r)v

n
↑ (r) = Env

n
↑ (r) (5.11c)∫

dr′∆∗(r′, r)un↑ (r
′)−

∫
drξ∗↓(r)v

n
↓ (r) = Env

n
↓ (r) (5.11d)

We see clearly that the electron-like coefficients, un are coupled to the

hole-like coefficients, vn and vice versa, indicating the hybridization which

results from the superconducting pair potential. We can then finally write

these equations in matrix form∑
n>0

HBdGΨ
n =

∑
n>0

EnΨ
n (5.12)

where Ψn =
(
un↑ (r), u

n
↓ (r), v

n
↑ (r), v

n
↓ (r)

)T
is the spinor of these weighting fac-

tors. Thus, we have derived an eigenequation in which the eigenvector de-
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scribes the dynamics of Bogoliubov quasiparticles. Notably Eq. 5.11 features

only the positive energy solutions. In reality, we derive eight BdG equations

through the method above however, due to the strict particle-hole symme-

try which we have introduced, the positive and negative energy solutions are

related. If Ψn
1 is an eigenvector of Eq. 5.12 with eigenvalue En then the eigen-

vector Ψn
2 =

(
−vn∗↑ , vn∗↓ ,−un∗↑ , un∗↓

)T
, when used in Eq. 5.12, has eigenvalues

−En.

5.3 Andreev Reflection

It should now seem clear that the superconducting pair potential certainly

mixes electron- and hole-like quasiparticles around the superconducting energy

gap within a bulk superconductor. At the same time, a gap forms at the Fermi

surface which, one would expect, prevents incoming electrons from entering

into the superconductor for energies E < |∆(r)|. In reality, the condensate

of Cooper pairs, has a finite phase ϕ. The incoming electron or electron-like

quasiparticle, encountering the pair potential at the interface acquires phase ϕ

and finds a partner within the metal with the same phase. These two in-phase

particles then condense in the bulk superconductor. While this process occurs,

the partner quasiparticle’s empty state is sent backwards into the normal metal

as a hole.

Now let’s consider a concrete example of this mechanism. We proceed

using the approach of BTK85 and consider the boundary conditions of the

quasiparticle wavefunctions un and vn from the BdG equations. We consider

a simple scenario, presented in Fig. 5.1, in which quasiparticles of a nor-

mal metal are moving to the right, in the positive direction, with wavevector

kN = (k+N cos θ, k+N sin θ) = (k+Nx, k
+
Ny) and approach the specular surface of a

superconductor at an angle θ with the surface normal. We assume there is

some potential barrier between the metal and superconductor and treat it as

a delta function

V (x) = Iδ(x) (5.13)

In the metal, there are then three possible states, the incident electron-like

quasiparticle (ELQ) with wavevector k+N = (−k+Nx, k
+
Ny), a reflected ELQ with

wavevector k+N = (−k+Nx, k
+
Ny), and an Andreev reflected hole-like quasiparticle

(HLQ) with wavevector k−N = (k−Nx, k
−
Ny). We write the wavefunction in the
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Figure 5.1: Quasiclassical trajectory of an electron-like quasiparticle (ELQ) in-
cident to the surface of a superconductor with a potential barrier V (x) = δ(x)
between the two materials. The incident ELQ approaches the surface with
momentum k+N it may reflect from the surface as an ELQ or HLQ with the
former referring to normal reflection and the latter Andreev reflection. Trans-
mission into the superconductor by Andreev reflection contributes a Cooper
pair into the superconducting condensate.
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metal, which we consider to be on the left or in the space x < 0, as[
u(r)

v(r)

]
L

=

[
1

0

]
eik

+
Nr + a(E, θ)

[
0

1

]
eik

−
Nr + b(E, θ)

[
1

0

]
e−k+Nr (5.14)

where a(E, θ) and b(E, θ) weight the probability of the reflected ELQ and HLQ

respectively. Here the wavevector of the incoming and reflected quasiparticle is

determined from the energy dispersion in the material. For the normal metal,

we then have the following, where the positive sign is associated with electrons

and the negative sign with holes.

k±N = kF ± mE

ℏ2kF
(5.15)

It’s important to note that the group velocity of holes is opposite to that of

electrons for the same wavevector k, it is therefore negative in the x-direction

for any k > 0.

In the superconductor we have only two possible states, the quasiparticle is

transmitted with either electron-like or hole-like character. In the right hand

space, x > 0 we therefore have[
u(r)

v(r)

]
R

= c(E, θ)

[
u+e

iϕ+

v+

]
eik

+
S r + d(E, θ)

[
v−e

iϕ−

u−

]
e−ik−S r (5.16)

Here the phase term ϕ is the phase of the superconducting order parameter

which we divide into the phase in the positive and negative directions ϕ± to pre-

pare for unconventional pairing. Again the wavevectors of these eigenvectors

are modified from the Fermi wavevector this time using the superconducting

dispersion

k±S = kF ±
m
√
E2 − |∆(k±)|2

ℏ2kF
(5.17)

In reality, the energy of these quasiparticles is very close to the Fermi energy as

the gap forms in a small range around the Fermi level, EF ≫ E. The incident

angles are therefore all approximately equal k+Nx ≈ k−Nx ≈ k+Nx ≈ k+Sx ≈ k−Sx ≈
kF cos θ. This has important consequences, mainly that the Andreev reflected

HLQ follows the incident path of the metal’s ELQ. This behaviour is referred

to as retro-reflectivity. We also note that the coherence factors themselves u±
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and v± are defined using the superconducting dispersion

u2± =
1

2

1 +

√
E2 − |∆(k)±|2

E

 (5.18a)

v2± =
1

2

1−

√
E2 − |∆(k)±|2

E

 (5.18b)

Solutions to the BdG equations must then obey the boundary conditions of

the quasiparticle wavefunctions at the interface x = 0, particularly they must

be continuous [
u(r)

v(r)

]L
x=0

=

[
u(r)

v(r)

]R
x=0

(5.19)

and their derivatives in the incident direction, ∂u(r)/d∂x = u′(r) and ∂v(r)/∂x =

v′(r) must satisfy[
u′(r)

v′(r)

]R
x=0

−

[
u′(r)

v′(r)

]L
x=0

=
2mI

ℏ2

[
u(r)

v(r)

]
x=0

(5.20)

Defining a measure of the junction impedance Z = mI
ℏ2kF cos θ

and solving the

above equations given the constraints leads to expressions for the reflection

and transmission coefficients86

a(E, θ) =
(e−iϕ+)u−v+

(1 + Z2)u+u− − Z2v+v−e(iϕ−−iϕ+)
(5.21a)

b(E, θ) =
Z(i+ Z)

[
v+v−e

(iϕ−−iϕ+) − u+u−
]

(1 + Z2)u+u− − Z2v+v−e(iϕ−−iϕ+)
(5.21b)

c(E, θ) =
(1− iZ)u−

(1 + Z2)u+u− − Z2v+v−e(iϕ−−iϕ+)
(5.21c)

d(E, θ) =
e(iϕ−−iϕ+)iZv+

(1 + Z2)u+u−e(iϕ−−iϕ+)
(5.21d)

Now that we have these coefficients we can study the effects on the tun-

nelling conductance, an important variable for STM. Once again we follow

the approach of BTK85 and express the conductance using these transmission

and reflection amplitudes. For a single tunnelling channel, in the absence of

scattering, the conductance is quantized in units 2e2/ℏ, as per Landaeur87.

We will consider the normalized conductance, in which we study the variation
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in the conductance from the normal state, we therefore exclude this unit of

conductance from the below. We can derive the conductance spectrum from

the reflection and transmission coefficients as

σ(E, θ) =
σS(E, θ)

σN
=

1 +Ra(E, θ)−Rb(E, θ)

σN
(5.22)

This conductance is increased by Andreev reflection Ra(E, θ) and decreased

by normal reflection Rb(E, θ) as expected. These R(E, θ) come directly from

the transmission and reflection coefficients

Ra(E, θ) = |a(E, θ)|2 = σ2
N |Γ+|2

|1 + (σN − 1)Γ+Γ−eiϕ−−iϕ+|2
(5.23a)

Rb(E, θ) = |b(E, θ)|2 = (1− σN)|1− Γ+Γ−e
iϕ−−iϕ+|2

|1 + (σN − 1)Γ+Γ−eiϕ−−iϕ+ |2
(5.23b)

Γ± =
E − Ω±

|∆±|
σN =

1

1 + Z

The normalized conductance σ(E, θ) is then given by

σ(E, θ) =
1 + σN |Γ+|2 + (σN − 1)|Γ−Γ+|2

|1 + (σN − 1)Γ+Γ−eiϕ−−iϕ+|
(5.24)

With the large number of variables present we will fix the incident angle at

θ = 0 and study the effect of finite barrier strengths Z and order parameter

phase ϕ. We first consider the case of an s-wave superconductor, so that ϕ+ =

ϕ− = ϕ0, ∆+ = ∆− = ∆0 and we arbitrarily set the barrier strength Z to be

Z = 0, 1, 5. We then plot Eq. 5.24 in Fig. 5.2a for these values of Z. The first

thing to notice is that, for both Fig. 5.2a and b, the normalized conductance

σ(E) = σS(E)/σN approaches one for energies E > ∆0 as expected. Increasing

the barrier strength corresponds to increasing the junction resistance of the

NIS junction. For a transparent junction Z = 0 we observe perfect Andreev

reflection, indicated by a normalized conductance of σ(E < ∆0) = 2 at energies

within the superconducting gap. Increasing Z, or decreasing the junction

resistance, decreases the sub-gap conductance until it reaches zero for large

Z. Under the same conditions, coherence peaks develop at the gap edge due

to resonant Andreev tunnelling resulting from the divergence of E2 − |∆0|2

terms in the transmission coefficient. The conductance spectrum then closely
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resembles the BCS DOS as seen in Fig. 1.1c.

In our derivation, we made clear the distinction between the superconduct-

ing order parameter and phase in the positive and negative directions. We did

so to capture the effects of unconventional pairing, that is an order parameter

whose phase and/or magnitude is dependent on direction. UTe2 is considered

to be a p-wave superconductor which is necessarily odd-parity in the orbital

part of its wavefunction, thus for any direction, which is not directly aligned

with its nodes, the phase difference between the positive and negative direc-

tion is π. We manually implement this phase difference in Fig. 5.2b by setting

ϕ+ = 0 and ϕ− = π and ∆+ = −∆−. Thus we model a normal metal - insulator

- p-wave superconductor (NIP) junction. The resulting conductance spectrum

is drastically different to the NIS case. For Z = 0, we once again observe

perfect Andreev reflection within the superconducting energy gap. However,

for finite Z we obtain smaller and smaller terms in the denominator of Eq.

5.24 around zero energy. The result corresponds to a bound state formed from

constructive interference of Bogoliubov quasiparticles at the interface between

the insulator and p-wave superconductor. Andreev tunnelling to this bound

state from the normal metal side is a resonant process thus a zero-bias con-

ductance peak (ZBCP) appears for large junction resistance or large potential

barrier Z.

5.4 Andreev Bound States

Despite over 50 years of research88 Andreev bound states (ABSs) remain highly

relevant in modern condensed matter research due to their presence on certain

surfaces of d -wave superconductors89, their connection with the topological

surface states of topological superconductors90, and the formation of Majorana

zero modes. As we’ve seen, they can be identified by the appearance of a

ZBCP which can be measured even with large potential barriers to transport.

We will now see that ABSs are not only obtained by transport between two

or more materials, but an intrinsic feature of an odd-parity superconductor

which exists independently of transport phenomena. Kulik was the first to

solve the problem of Andreev transport in a superconductor - normal metal -

superconductor (SNS) junction and thus the first to discover the mechanism

which forms an ABS88. In Fig. 5.3a we see how a cycle of Andreev reflections

may produce an ABS between two s-wave superconductors. The incident ELQ
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Figure 5.2: a. Normalized conductance σ(E) from Eq. 5.24 in a normal
metal - insulator - s-wave superconductor (NIS). For any Z the conductance
for energies outside the gap, E ≫ ∆0, tends to the normal state conductance
σ(E) = σS(E)/σN = 1. For Z = 0, the insulating barrier is turned off and
there is perfect Andreev reflection in the superconducting gap σ(E < ∆0) =
2. For finite Z, coherence peaks are observed at E = ∆0 and the in-gap
conductance is reduced to zero for large potential barriers. b. Normalized
conductance σ(E) from Eq. 5.24 in an p-wave superconductor - insulator -
normal metal junction. For Z = 0, we observe perfect Andreev reflection
within the energy gap as before. However, for finite Z, a zero-bias conductance
peak (ZBCP) is universally observed. This ZBCP is the result of the formation
of a bound state at the surface layer of the p-wave superconductor. This bound
state is formed at zero energy Eb = 0, consequently tunnelling electrons flow,
via the bound state, in a process of resonant Andreev tunnelling
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from the metal strikes the superconductor on the right and retro-reflects as a

HLQ. The HLQ traverses the normal metal, strikes the left superconductor

and is retro-reflected as an ELQ. At each of these reflections the quasiparticle

“picks up” some phase from the reflection process but also from the bulk

superconductor. If the phase difference between these superconductors is just

right one can see how constructive interference of these cyclically reflected

quasiparticles may produce a bound state at energies E < |∆|. The condition

required to generate an ABS in this setup is analogous to Bohr’s quantum

condition for atomic orbits, the phase shift along this closed path of reflections

must be a multiple of 2π86.

− arctan

(√
|∆R|2 − E2

b

Eb

)
− arctan

(√
|∆L|2 − E2

b

Eb

)
± ϕ+

2dNE

ℏvF
= 2nπ

(5.25)

Here |∆L/R| is the energy gap of the left and right superconductor, Eb is the

energy of the bound state, ϕ = ϕL − ϕR is the phase difference between the

two superconductors, and n is an integer. The term dNE
ℏvF

is the phase acquired

moving in one direction through the metal, where dN is the thickness of the

metal layer and vF is the Fermi velocity. Thus, the above expression is a sum

of the phase change due to Andreev reflections (the first two terms), the phase

change from the pair potential, and the phase acquired in the normal metal

region. In Fig 5.3b we plot the bound state energy versus the phase difference

between the left and right superconductors. Similar to the zero energy state

we observed in the previous section we find a zero energy bound state for phase

difference ϕ = ϕL − ϕR = π.

To see that these bound states are independent of transport phenomena we

consider the junction of a normal metal and superconductor. Again, we can

consider the process of cyclic Andreev reflections at the interface, these cyclic

reflections produce a bound state at energy Eb as long as the below condition

is satisfied.

1− exp

(
2idN
ℏvF

)
Γ+|E=Eb

Γ−|E=Eb
exp (±i(ϕ− − ϕ+)) = 0 (5.26)

Where we set Γ± = Eb−
√
E

2
b−|∆±|2

|∆±| . We can then see that a bound state can be

formed even when the thickness of the normal metal is zero, dN = 0. Thus the
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Figure 5.3: a. Illustration of the resonant reflection process producing an
Andreev bound state in a superconductor - normal metal - superconductor
(SNS) junction. b. Andreev bound state energy versus phase for an SNS junc-
tion with two s-wave superconductors. A zero-energy bound state is observed
whenever the phase difference between the superconductors ϕ = ϕL − ϕR = π.
Figure reproduced from Ref. [86]

bound state condition becomes

Γ+|E=Eb
Γ−|E=Eb

exp (±i(ϕ− − ϕ+)) = 0 (5.27)

Which is fulfilled for any pair potential which changes sign by π in the direction

perpendicular to its surface. Thus this process of cyclic Andreev reflections

produces a bound state independent of an adjacent material, it is intrinsic to

the surface of an odd-parity superconductor.

5.5 Andreev Bound State Topology

In recent decades the study of topological phases of matter, materials sup-

porting edge/surface states protected by topological invariants, has expanded

enormously. While initially applied to the study of the quantum Hall effect91,

the field has since grown to include topological insulators92, topological semi-

metals93, and even topological superconductors94. Topological insulators are

now widely classified and readily grown in labs around the world. While the

study of topological semi-metals is more recent there are many compounds

which host their topologically non-trivial surface states95. However, despite

the significant demand for topological superconductors we have only a hand-

ful of promising candidates. The superfluid phases of 3He are the only firmly

established examples of topologically non-trivial Cooper pair condensates96.
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Figure 5.4: The Atland-Zirnbaeur (AZ) (Ten Fold Way) classification scheme
for random matrices99,100 which defines topological classes based upon funda-
mental symmetries of the bulk Hamiltonian including time-reversal symme-
try (TRS), particle-hole symmetry (PHS), and chiral or sublattice symmetry
(SLS). The absence of symmetries is denoted by 0 and the presence of sym-
metries is denoted by +1 or -1 depending on whether the symmetry operator
squares to +1 or -1. The symbol Z is the integer topological number related
to the number of edge/surface states. The symbol Z2 is the topological index
in time-reversal conserving systems and coincides with the parity of the spin
Chern number94.

A necessary ingredient for topological superconductivity is the complex phase

winding of the superconducting order parameter in momentum space which is,

most simply, realized in odd-parity p-wave pairing as that in superfluid 3He.

Our subject of study UTe2 is therefore a prime candidate to host topological

superconductivity.

The defining characteristic of these topological phases of matter is the

appearance of edge/surface states expected from the discontinuity of the topo-

logical invariant at the edge/surface, this is the so-called bulk-boundary corre-

spondence97. In several instances these edge/surface states can be very exotic,

as is the case for the fractionalized charge measured in the fractional quantum

Hall effect98. In superconductors, these surface states are zero-energy Bogoli-

ubov quasiparticles confined in Andreev bound states. These bound states

can have various forms of dispersion which derive from the various topological

numbers used for their classification.

The topological invariants used in all topological systems depend upon crit-

ical symmetries of the bulk band structure and, in the case of topological su-
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perconductors, the structure of the order parameter96. A general classification

system exists, the Atland-Zimbaeur scheme otherwise known as the ten-fold

way100. In this scheme superconductors are classified by time-reversal symme-

try (TRS), particle-hole symmetry (PHS), and chiral symmetry (a combination

of TRS and PHS). There are then ten possible ways that the BdG Hamilto-

nian HBdG of a superconductor can be classified. HBdG could lack TRS or PHS

(denoted by 0 in Table 5.4), or the TRS and PHS operators could square to

+1 or -1. There are then 9 ways HBdG could transform under TRS and PHS,

the tenth is that HBdG may lack TRS or PHS but maintain chiral symmetry

Γ = iT C. Here the symmetry operator for PHS is defined as C = τxK such

that C2 = 1 and where τx is the first Paul matrix acting on particle-hole space

and K is the complex conjugate operator. A similar expression can be used

for the TRS symmetry operator T = iσyK so that T 2 = −1 where σy acts on

the spin space. A HBdG which preserves PHS is then one which acts as

CHBdG(k)C−1 = −HBdG(−k) (5.28)

and one which preserves TRS is

T HBdG(k)T −1 = HBdG(−k) (5.29)

Notably superconductors and superfluids generally preserve PHS in the vicinity

of the gap due to the particle-hole mixing which results from the pair potential.

This ten fold way classification system works exceptionally well for “strong”

topological superconductors, that is superconductors which are fully gapped

with an odd-parity gap function. Such states fulfill the definition of a topolog-

ical phase, that it is disconnected from any other gapped phase. This ensures

that the gap must close in order to change the topological properties of the

phase. An example of such a topological superfluid phase is that of the B

phase of 3He which has a d-vector of the form d(k) ∝ (kx, ky, kz)
96. This state

has TRS (-1) and PHS (+1) and thus has chiral symmetry. HBdG(k) anti-

commutes with the chiral operator {Γ, HBdG(k)} = 0. This state is therefore

categorized in the DIII classification of Table 5.4 and has an associated 3D

topological winding number w3D which guarantees the presence of Andreev

bound states on all surfaces. Such a state is similar to the proposed Au state

of UTe2 if it hosts a spherical Fermi surface component. The Andreev bound

states associated with these topological surface states have linear, Dirac-like
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dispersion and vanishing density of states at zero-energy. An illustration of

this dispersion is shown in Fig. 5.5a.

Nodal topological superconductors are possible however these states not

fully gapped and are therefore considered “weak” topological superconduc-

tors. Again, we can look to the superfluid phases of 3He for guidance in

topological classification. The A-phase of this superfluid has a d-vector of

the form d(k) ∝ (kx + iky, 0, 0). It conserves PHS but breaks TRS. Such a

topological superfluid/superconducting state is generally referred to as a chiral

superfluid/superconductor and in this case 3He-A is a Weyl superconductor,

hosting zero energy Weyl surface states96. Classifying such a state then re-

quires reducing the dimensions of the Brillouin zone (BZ) by the dimension

of the nodal points. For the case of the A-phase we consider the topological

classification with co-dimension p = dBZ−1. Thus, for a superfluid phase with

nodes aligned along the kz axis we consider the Hamiltonian HBdG(k∥, kz) and

integrate the Berry curvature F(k) = ∇k×A(k) at each two-dimensional (2D)

slice

Nkz =
1

2π

∫
dkxdkyFz(k) (5.30)

where the Berry curvature is the curl of the Berry connection or Berry vector

potential A(k) = i⟨un(k)|∇kun(k)⟩. This number Nkz is the first topological

invariant, the TKKN number or first Chern number. This number can only be

defined for a three-dimensional nodal system by carrying out this dimensional

reduction, this is why we refer to this topological phase as “weak”. Carry-

ing out this integral we obtain Nkz = +1 for |kz| < kF and Nkz = 0 for any

|kz| > kF . Each slice in the topologically non-trivial region of momentum

space can then be considered a 2D fully gapped chiral superconductor with a

topological surface state forming within this gap. The resulting surface state

of the A-phase then has a one-dimensional arc state with flat dispersion. It is

made up of the zero energy states of each slice connecting the nodes as they

project to the 2D surface BZ. Fig. 5.5b presents the zero energy arc states for

a TRS conserving, topological, nodal superconductor. It features two degen-

erate, linearly dispersing, surface bands. A chiral superconductor/superfluid,

like 3He-A, would host only one of these surface states on a given surface due

to the broken TRS. These flat Andreev bound states provide a large contribu-

tion to the density of states (DOS) at zero energy. This large DOS can then

produce a ZBCP in tunnelling spectroscopy. A superconducting state similar

to the A-phase of 3He is also possible in UTe2 depending on the Fermi surface
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Figure 5.5: a. The Dirac-like dispersion of topological surface states seen in
fully-gapped topological superconducting systems. The zero-energy states are
Majorana-like due to the particle-hole hybridization of Bogoliubov quasipar-
ticles22. b. The arc-like dispersion of topological surface states see in nodal
topological superconducting systems. The flat band of zero-energy states linkes
the projection of the nodal points to the surface Brillouin zone. Figures repro-
duced from Ref. [101].

geometry and whether two or more irreducible representations are accidentally

degenerate.

Owing to the size of the field of topological condensed matter there is a

wealth of topological classifications. Mirror and rotational symmetries of the

bulk crystal can be combined with the ten fold way to define higher order topo-

logical phases in what is called topological crystalline superconductivity102103.

In this case the mirror and rotational symmetries, conserved or broken, on a

particular crystal surface may impact the presence or absence of topological

surface states in nodal superconductors. Similar to the states above, these

higher order topological phases feature zero-energy flat bands or hinge states

connecting the projection of the bulk nodes to the 2D surface momentum

space102.



Chapter 6

The Zero-Energy Surface State

of UTe2

6.1 Introduction

One of the clearest paths to topologically non-trivial superconductivity is

the presence of odd-parity, spin-triplet superconductivity and, as discussed in

Chapter 3, such a superconducting state is likely present in UTe2. We therefore

turn to our recent STM measurements which reveal the presence of an Andreev

bound state at the (0 -1 1) cleave surface of UTe2 and clarify the possible order

parameter symmetries of this potential topological superconductor.

6.2 Andreev Spectra

As pointed out in Chapter 4, finite zero-energy conductance is consistently

detected when using a normal metal tip in STM while UTe2 is in the su-

perconducting state i.e. for T < Tc = 1.6 K. It is this finite DOS and

the low SNR obtained by coherence peak fitting which motivated the use

of superconducting scan tips in PDW detection. The use of superconduct-

ing Nb tips not only enhances the energy resolution of the coherence peaks

but also allows Andreev reflection processes within the combined energy gap

|∆Nb+UTe2| = |∆Nb| + |∆UTe2|. In Fig. 6.1 we present a dI/dV (V ) spectrum

recorded at T = 0.28 K using a superconducting tip. The region inside the

combined energy gap features finite-energy, in-gap peaks and a sharp zero-

energy peak. These in-gap states are dependent on the tip configuration,

changing in intensity with different tip geometries and sometimes featuring

98
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Figure 6.1: dI/dV (E) measurement on the (0 -1 1) surface of UTe2 using a
superconducting Nb tip. Tunnel junction bias voltage Vb = 3 mV and setpoint
current Is = 1 nA. Blue lines indicate the energy of in-gap peaks likely resulting
from multiple Andreev reflections.

two or four finite-energy in-gap peaks. These spectra are therefore a challenge

to interpret, however, we can derive some essential facts through measurement.

Most importantly, we must confirm that the in-gap states are only a feature

of the superconducting sample. Finite-energy in-gap states can be a feature

of a superconducting tip with an embedded magnetic impurity104. To confirm

that this is not the case for the Nb tips used here we record a dI/dV (V ) line

scan across a adsorbed metallic cluster of Nb atoms (Fig. 6.2a). In Fig. 6.2b

(red) we see that spectra recorded on the superconducting surface feature four

finite-energy in-gap peaks and the prominent zero-energy peak. Measurements

performed on (6.2b black) and along (6.2c) the metallic Nb cluster show only

the superconducting energy gap associated with our scan tip. The in-gap

states are therefore unique to tunnelling between the superconducting tip and

the UTe2 (0 -1 1) surface.

If all this in-gap conductance does not result from impurity states of the

tip then the question remains - how can in-gap states arise in this tunnelling

setup? We first note from the blue lines in Fig. 6.1, that the sub-gap peaks

appear at energies A+ = 0.54meV and A− = 0.52 meV. In superconductor-

insulator-superconductor tunnel junctions multiple Andreev reflection (MAR)

processes are possible and should depend significantly on the tunnel junction



100

Figure 6.2: a. Topography in a 13 nm2 FOV on the (0 -1 1) cleave surface of
UTe2 with an adsorbed impurity cluster likely composed of metallic Nb from
the scan tip (VS = 7mV, IS = 200pA). b. dI/dV spectra recorded off (red)
and on (black) the impurity cluster. The sub gap features present on the UTe2
surface fall to zero at the adsorbed cluster. c. dI/dV linescan across the
impurity cluster indicated by the blue arrow in a.

structure105. This transport mechanism consists of a series of Andreev reflec-

tions in which the reflected particle gains energy eV with each subsequent

reflection. These reflections can have very complex energy dependence even

for symmetric superconducting energy gaps106. For assymmetric energy gaps

as in our experimental setup |∆UTe2|/|∆Nb| ≈ 0.2, MAR processes can produce

peaks at energies (|∆Nb|+ |∆UTe2|) /3 ≈ 0.54 meV. This is consistent with the

finite-energy peaks marked by blue lines in Fig. 6.1. We therefore expect MAR

processes to be the source of these finite-energy in-gap states.

We can gain further insights into the origin of these peaks by studying

their dependence on tunnelling distance z(m). In Fig. 6.3 we plot dI/dV (V )

recorded at increasing tunnel current setpoints and thus decreasing tip-sample

distance or z values. The in-gap states seen in Fig. 6.1 are recorded at each

junction setup thus allowing us to track these peaks’ conductance dependence

on the tip-sample distance or dI/dV (V, z). By doing so, we can compare the

behaviour of normal state quasiparticle tunnelling against that of in-gap Bo-

goliubov quasiparticle transport. As described in Section 2.4.1, normal state

tunnelling currents and consequently differential conductance exhibits an ex-

ponential dependence on tip-sample dI/dV (V, z) ∝ Ae−κz. Normalizing this κ

value by the normal state tunnelling constant κN provides information regard-

ing the tunnelling process107,108. As we saw in Section 5.3, for a transparent

barrier Z = 0 Andreev conductance is twice that of normal state conductance
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Figure 6.3: dI/dV (E) spectra recorded with junction bias voltage Vb = 3
mV and varying setpoint currents from Is = 1.4 nA to 4 nA. At these low
junction resistances the zero-energy peak shown in Fig. 6.1 splits to finite-
energy maxima. As the junction resistance decreases the coherence peaks and
MAR peaks move to higher energy. The reason for this divergence is not well
understood. From second-order polynomial fitting to the multiple Andreev
reflection (MAR) and coherence peaks, maxima in dI/dV (E) were identified
and are indicated by coloured circles.

owing to the fact that it is a two particle process. Hence peaks resulting from

Andreev reflection have normalized tunnelling constant κAR/κN > 1108. On

the other hand, resonant Andreev transport to bound states or coherence peaks

should exhibit κRes/κN < 1.

In Fig 6.3, we present a series of spectra recorded with bias voltage Vb = 3

mV and setpoint current Is ranging form 1.4 nA to 4 nA. To increase the

setpoint current by this amount the tip is moved a total distance of δz ≈ 0.8

Å towards the sample. High setpoint currents/low tip-sample distances were

recorded to maximize the signal-to-noise ratio of the spectra however, these low

junction resistance measurements typically split the zero-energy peak. We will

discuss this phenomenon in more detail later, as it is crucial to understanding

the pairing state of UTe2, but for now, we study the evolution of these spectra’s

differential conductance peaks with varying tunnelling distance z. To derive
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a normal state tunnelling constant κN we fit dI/dV (V, z) spectra at V = −3

mV with an exponential function. The data with its exponential fit overlaid

(blue) is shown in Fig. 6.4a. From this fit we derive κN = 1.23Å−1 for the

single particle decay constant. In Fig. 6.4a we also plot the differential con-

ductance of the positive and negative coherence peaks (red and orange) whose

maxima are derived by second order polynomial fitting. While the conduc-

tance at the coherence peaks is larger than that at V = −3 mV, it exhibits a

weaker dependence on tip-sample distance. From fitting an exponential to the

coherence peak conductance we derive the normalized decay constant κ/κN ,

which is 0.83 and 0.84 for the positive and negative peaks, respectively. This

confirms that resonant Andreev tunnelling contributes to the tunnelling cur-

rent at these energies108. By contrast, in Fig. 6.4b we present the conductance

of the finite-energy, sub-gap peaks (purple and pink) obtained by second-order

polynomial fitting to these peaks at varying z alongside the normal state con-

ductance (blue). Again, we can derive the decay constant for these suspected

MAR peaks. Doing so, we find that the positive and negative MAR peaks have

normalized decay constants 1.32 and 1.01, respectively indicative of higher or-

der tunnelling processes, such as Andreev reflection. Although the normalized

decay constant for these peaks does not reach the full Andreev reflection value

of 2 this is expected in the tunnelling regime. We therefore attribute these

finite-energy sub-gap peaks to MAR processes. Finally, we study the decay

constant at and around zero-energy to gain insight into the tunnelling process

responsible for the large zero-energy conductance. To do so, we average the

differential conductance within 40µeV around zero-energy, fit to an exponen-

tial function, and compare against the normal state decay constant κN . In

Fig. 6.4c we compare dI/dV (V = ±20µV) (green) with the single-particle

dI/dV (V = −3mV) (blue). Similar to the coherence peak conductance the

zero-energy conductance exhibits a weaker dependence on tip-sample distance

than the normal state tunnelling channel. Extracting the normalized decay

constant we obtain κZBP/κN = 0.83 indicative of resonant Andreev tunnelling,

expected for tunnelling to an Andreev bound state86.

Although it now seems clear that the zero-energy peak is the result of

tunnelling to an Andreev bound state, we note that zero-energy peaks in dif-

ferential conductance are often attributed to the Josephson effect, discussed in

Section 2.4.2. However, Josephson tunnelling always features a decay constant

κJ/κN > 1, owing to the two-particle tunnelling process108 and furthermore the
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Figure 6.4: a. Differential conductance recorded at 3 mV (blue) and at co-
herence peak energies determined by second-order polynomial fitting. Positive
and negative energy coherence peak conductance are represented by red and
orange, respectively. The coherence peaks’ weaker dependence on tip-sample
distance is indicative of resonant Andreev tunnelling. b. Normal, single-
particle differential conductance (blue), differential conductance of positive
and negative multiple Andreev reflection (MAR) peaks, and averaged differen-
tial conductance within 40µV around zero-energy. MAR peaks show a strong
dependence on tip-sample distance due to higher order tunnelling processes
while zero-energy conductance depends weakly on tip-sample distance due to
resonant tunnelling processes.
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magnitude of the zero-energy peak is significantly larger than that expected for

an s-wave to p-wave Josephson effect. In Appendix C we compare Josephson

and Andreev tunnelling more directly and conclusively rule out the Josephson

effect in these measurements.

We have now firm evidence that the zero-energy peak measured on the (0

-1 1) surface of UTe2 is the product of a zero-energy Andreev bound state

however, why this state is present and what are its properties remains unclear.

To answer these questions we turn to a theoretical model, developed for Ref.

[109], which models tunnelling between an s-wave superconductor and a p-

wave superconductor whose gap function we can control exactly.

6.3 S -wave - Insulator - P-wave (SIP) Model

6.3.1 Topological Surface Band (TSB) Phenomenology

Whether the Andreev bound state at the surface of UTe2 is topologically trivial

or non-trivial depends strongly on the normal state Fermi surface and super-

conducting order parameter. Following many of the early reports on the Fermi

surface of UTe2 we assume the presence of a closed Fermi surface around the Γ

point of the Brillouin zone110,111,112. For such a Fermi surface, the presence of

a p-wave order parameter ensures that Andreev bound states (ABS) are topo-

logically non-trivial and of either Z or Z2 topological classification (see Fig.

5.4). The associated topologically non-trivial ABSs then consist of either, a

Majorana-Dirac cone or a flat Majorana/Fermi arc as shown in Fig. 5.5.

In Chapter 3, we discussed how the presence or absence of chiral super-

conductivity is of particular importance in determining the pairing symmetry

of this p-wave superconductor as several experimental and theoretical reports

have concluded a chiral, TRS breaking, order parameter. We therefore be-

gin our theoretical modelling by calculating the density of states (DOS) for a

chiral and non-chiral order parameter in UTe2. As our example chiral order

parameter we choose a complex linear combination of two irreducible repre-

sentations of D2h, Au + iB3u. The dispersion of the resulting chiral surface

state in the kx − ky plane is presented in the Fig. 6.5a. It features only a

single, TRS-breaking band. By contrast, in Fig. 6.5b we plot the dispersion

of a TRS-conserving surface state resulting from a non-chiral order parameter

of B3u symmetry. To understand how these flat TSB states contribute to the
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Figure 6.5: a. 3D band dispersion for a B3u topological surface state in the
kx − ky plane. b. The same as in b for a time-reversal symmetry breaking,
chiral state Au+iB3u. Topological surface states merge with bulk bands at the
superconducting energy gap |∆UTe2| = 0.25 meV. c. Density of states (DOS)
obtained using Eq. 6.1 resulting from topological surface states presented in
a and b. Both TSBs feature a flat Fermi arc which produces a sharp peak
around the Fermi level with a broad maximum and extending to the UTe2
energy gap.

DOS we make use of the simple relation

N(E) =
∑
kx,y

Γ/π

(E − ETSB(kx, ky))
2 + Γ2

(6.1)

where Γ is a momentum independent quasiparticle broadening parameter. The

result of this summation is presented in Fig. 6.5c with Γ = 5µeV. The result-

ing DOS is identical for both TSB states, chiral and non-chiral, producing a

sharp zero-energy peak. The zero-energy peak in our dI/dV (V ) spectra (Fig.

6.1) therefore cannot distinguish a chiral from a non-chiral state in the large

junction resistance limit. We then seek tunnelling characteristics which may

help distinguish these two proposed topological surface states. To do so, we

model tunnelling between an s-wave superconducting tip (S), through vacuum

(I), to a p-wave superconductor (P) of appropriate pairing symmetry.

6.3.2 SIP Model Details

The unknown geometry of STM scan tips makes exact modelling of tunnelling

conductance extremely difficult, we therefore use a planar tunnelling model,

which as we will see later, captures the essential experimental facts. An illus-

tration of the model is shown in Fig. 6.6a. We begin by writing the general
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four component Bogliubov-de Gennes Hamiltonian for a superconductor

H =
∑
k

ψ†(k)H(k)ψ(k)ψ(k) = (ck,↑, ck,↓, c
†
−k,↑, c

†
−k,↓)

T (6.2)

We then introduce the Nb tip by first writing the Hamiltonian for an s-wave

superconductor as

HNb(k) =

(
ϵ(k)σ0 ∆Nb(iσ2)

∆∗
Nb(−iσ2) −ϵ(−k)σ0

)
(6.3)

where σ1,2,3 are the Pauli matrices and σ0 is the 2×2 identity matrix I2×2. ∆Nb

is the momentum independent superconducting order parameter for the Nb tip.

To model the normal state band structures, ϵNb(k) and ϵUTe2(k), we consider

a simple, nearest-neighbour, tight-binding dispersion in a cubic lattice, of the

form cos(kx) + cos(ky) + cos(kz) − 2 in units of meV. The Hamiltonian used

for UTe2 is

HUTe2(k) =

(
ϵUTe2(k)σ0 ∆UTe2(k)

∆∗
UTe2

(k) −ϵUTe2(−k)σ0

)
(6.4)

where the p-wave order parameter is defined by the d-vector ∆UTe2(k) ≡
∆UTe2i(d · σ)σ2. Changing the order parameter symmetry of the p-wave su-

perconductor thus requires change of d-vector. For a non-chiral B3u, p-wave

state this d-vector is

d = (0, sin(kzc), sin(kyb)) (6.5)

and the resulting gap function is

∆k ∝

(
i sin(kzc) sin(kyb)

sin(kyb) i sin(kzc)

)
(6.6)

while for a chiral AU + iB3u state the d-vector is

d = (0, sin(kyb) + i sin(kzc), sin(kzc) + i sin(kyb)) (6.7)

giving rise to the gap function

∆k ∝

(
− sin(kzc) + i sin(kyb) sin(kzc) + i sin(kyb)

sin(kzc) + i sin(kyb) − sin(kzc) + i sin(kyb)

)
(6.8)
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Figure 6.6: a. Illustration of SIP model framework for calculation. Twenty
layers of Nb are stacked in the c direction adjacent to fifty layers of UTe2 with
tunnelling between the surface layers. b. Surface band dispersion of Nb (or-
ange layer) featuring a superconducting energy gap of |∆| = 1.25 meV when
|M | = 0. c. Surface band dispersion of UTe2 (blue layer) with a superconduct-
ing energy gap |∆| = 0.25 meV while |M | = 0. Red in-gap states correspond
to the time-reversal symmetry preserving TSB of a B3u order parameter. d.
SIP model calculation of the surface band dispersion of Nb with finite tun-
nelling matrix element, |M | = 0.2 meV. UTe2 bulk states are forbidden from
tunnelling to the Nb tip because of the superconducting energy gap. TSB
states exhibit enhanced tunnelling due to resonant Andreev reflection of TSB
quasiparticles. The zero-energy Fermi arc produces a peak in the UTe2 DOS
which is measured by the Nb tip as a peak around E = 0

Lastly, tunnelling of electronic states between the Nb tip and UTe2 sample is

introduced via the tunnelling Hamiltonian

HT = −|M |
∑
k∥

[
ψ†
Nb,k∥

τ3 ⊗ σ0ψUTe2,k∥ + h.c.
]

(6.9)

Here k∥ = (kx, ky, 0) is the in-plane quasiparticle momentum at the interface.

The model then consists of twenty Nb layers adjacent to fifty UTe2 layers

stacked in the ĉ direction with tunnelling at the surface layer of each super-

conductor (Fig. 6.6a). The combined Hamiltonian H = HNb +HUTe2 +HT is

then solved for its eigenvalues and eigenvectors. Eigenenergies at the surface

layers whose wavefunction weight exceeds a lower bound (10−3 in this case)

are kept to produce the plots shown.

By setting the tunnelling matrix elements to zero, |M | = 0, the combined

Hamiltonian can be solved at the Nb and UTe2 surfaces respectively. For Nb,

this simply reveals the superconduncting energy gap around the Fermi level
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Figure 6.7: Schematic of Andreev reflection between the s-wave Nb tip and
the TSB of p-wave UTe2 with an insulating barrier between them

(Fig. 6.6b) however, for UTe2 this clearly demonstrates the presence of in-gap

topological surface states, evidenced by the red bands crossing the Fermi level,

here we have used the TRS conserving B3u order parameter. Furthermore, by

setting the magnitude of the tunnelling matrix element to be small |M | = 0.2

meV, and by calculating the band dispersion at the Nb interface, we find that

the bulk states of UTe2 do not contribute to the in-gap states measured by

the Nb tip. In contrast, the TSB of UTe2 can tunnel, via resonant Andreev

reflections, to the Nb tip thus demonstrating s-wave tip selection of TSB quasi-

particles. Henceforth, we refer to conductance around zero-energy as Andreev

conductance dI/dV (r, V )|V=0 = a(r, V ) (Fig. 6.7).

While normal tip measurements could, in principle, detect this zero-energy

state they instead measure finite DOS at zero-energy (Fig. 4.2). The zero-

energy peak is likely masked by the conductance contribution of broken Cooper

pairs which are expected to be formed by both magnetic and non-magnetic im-

purities in a p-wave superconductor75. These broken Cooper pairs experience

scattering which overcomes the superconducting pair potential and thus do

not contribute to Andreev reflection as they are no longer coherent Bogoli-

ubov quasiparticles.

6.3.3 SIP Model Predictions and Experimental Verifi-

cation

From both theory and experiment, we have now confirmed that our supercon-

ducting tip can detect zero-energy TSB quasiparticles via resonant Andreev

tunnelling. The remaining question is whether the SIP model may distinguish

between these two forms of superconducting pairing. A simple variable of the
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experiment can be mimicked in this tunnelling model. The magnitude of the

tunnelling matrix |M | can be varied and this variable should be related to

the tip-sample distance, although the exact dependency cannot be predicted a

priori. By increasing the magnitude of the tunnelling matrix, or equivalently

by reducing the tip-sample distance, these two forms of topological supercon-

ductivity become distinguishable. As shown in Fig. 6.8 the chiral, Au + iB3u

TSB splits in momentum space but maintains a zero-energy Fermi arc. As

the magnitude of the tunnelling matrix element is increased, the zero-energy

peak in the DOS remains unaffected by changes in tip-sample distance. By

contrast, the TSB of a time-reversal symmetry conserving B3u state becomes

gapped in energy as the tunnelling matrix is increased or tip-sample distance

decreased. This gap in band dispersion manifests as a split in the zero-energy

DOS, and consequently, in the zero-energy Andreev conductance. Although

specific examples, B3u and Au+ iB3u, are chosen for Fig. 6.8 this phenomenol-

ogy is consistent for all possible chiral and non-chiral states of the D2h point

symmetry group.

An important element in the interpretation of these results is the role of

the macroscopic superconducting phase of both the s-wave tip and p-wave

sample, as well as the protection symmetries of the TSBs. As discussed in

Section 2.4.2, phase interactions between superconductors can be crucial in

the interpretation of tunnelling current measurements. In the SIP model,

while the tip and sample are far apart (|M | → 0) they each have an arbitrary,

and independent phase, however as the distance between these electrodes is

reduced |M | > 0 there are phase interactions between them resulting in a finite

relative phase difference. To minimize the electronic energy of the system,

this relative phase difference evolves with decreasing tip-sample distance to be

δϕ = π/2. Such a phase difference breaks time-reversal symmetry, as eiδϕ =

i → e−iδϕ = −i. For a chiral superconducting state, this symmetry is already

broken and the TSB does not require this protection symmetry to maintain

its gaplessness. By contrast, the TSB of a non-chiral state is protected by

time-reversal symmetry and the breaking of this symmetry destroys the in-

gap TSB. A clear demonstration of this TSB splitting is shown in Appendix

Fig. D.1.

To verify the SIP model predictions, and distinguish between a chiral and

non-chiral order parameter in UTe2, we perform dI/dV (V ) or Andreev spec-

troscopy a(V ) measurements as a function of junction resistance at T = 280
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Figure 6.8: a. Calculated quasiparticle dispersion within the SIP interface with
relative phase difference δϕ = π/2 as a function of tunnelling matrix element
|M |. Calculations are carried out for a chiral Au + iB3u order parameter
and reveal that with decreasing junction resistance the chiral TSB splits in
momentum, but maintains zero-energy crossings. The zero-energy DOS is
therefore unchanged by the introduction of the s-wave scan tip. b. The same
plot as in a for a non-chiral superconductor with B3u symmetry. Increased
tunnelling to an s-wave tip splits the TSB in energy thus generating, two
particle-hole symmetric Andreev conductance maxima.
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mK. Figure 6.9a shows clearly that the zero-energy peak first broadens, and

then splits, at small junction resistance. This definitively rules out the possi-

bility of a chiral superconducting state and suggests a non-chiral pairing state

consistent with much of the evidence outlined in Chapter 3. We can also

now compare the rate of TSB splitting obtained by experiment to that pre-

dicted from the SIP model. While the exact relationship between |M | and
RN is unknown, a qualitative comparison can be made. The experimentally

determined splitting is presented in Fig. 6.8b and the SIP prediction in Fig.

6.8c. Qualitatively we find a close match between theory and experiment for

|M | ∝ 1/RN .
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Figure 6.9: a. Measured evolution of Andreev conductance a(V ) ≡ dI/dV |SIP
at T = 280 mK on the (0 -1 1) surface of UTe2 as a function of decreasing
junction resistance RN . The a(V ) spectra begin to split at RN ∼ 5 MΩ.
This splitting behaviour is indicative of a non-chiral, time-reversal symmetry
preserving superconducting state. b. Measured energy splitting of Andreev
conductance a(V ) maxima as a function of decreasing junction resistance RN .
The superconducting energy gap of UTe2, |∆UTe2| is indicated by black dashed
lines. c. Calculated energy splitting of TSB states as a function of increased
tunnelling matrix amplitude |M | ∝ 1/RN . TSB energy splitting expected for
a chiral TSB are represented by orange circles and that expected for a non-
chiral TSB are shown in blue circles. Comparison between experiment and
calculation reveal an approximate relationship between junction resistance and
tunnelling matrix element |M | ∝ 1/RN .



Chapter 7

Quasiparticle Surface State

Quasiparticle Interference

(QSQPI)

7.1 Introduction

The discovery of the large, zero-energy conductance peak, mediated by An-

dreev transport of in-gap quasiparticles, has indicated the presence of a topo-

logical surface band at the (0 -1 1) surface of UTe2. Such a state is expected for

an odd-parity p-wave superconductor however the observation of zero-energy

state splitting limits the possible bulk order parameter symmetries to the single

component B1u, B2u, and B3u. More exact determination of the order parame-

ter requires moving beyond individual dI/dV (V ) analysis, and instead study-

ing its spatial variations dI/dV (r, V ). Bogoliubov quasiparticle interference

(QPI) has been used to identify the superconducting gap structure of many

unconventional superconductors113,114 and is therefore a natural technique to

employ in studying UTe2. Such measurements have added complications for

UTe2. Firstly, the presence of an Andreev bound state/quasiparticle surface

band (QSB) at the (0 -1 1) surface should contribute to scattering, as these

exotic in-gap Bogoliubov quasiparticles have their own dispersion kσ(E). Sec-

ondly, QPI measurements are performed on the (0 -1 1) plane and the Fermi

surface geometry at this plane must be deduced to understand the scatter-

ing wavevectors. And thirdly, the Fermi surface geometry of UTe2 remains

poorly understood. We will therefore have to address each of these points as

we proceed in interpreting our QPI measurements.

113



114

7.2 The UTe2 Fermi Surface within QSQPI

As discussed in Chapter 3, there are many outstanding issues in studies of

UTe2. Perhaps chief among the controversies is the topology of the Fermi sur-

face (FS). Measurements of the FS have reached broad agreement regarding

the existence of two cylindrical, quasi-2D bands, one is hole-type and centred

around the X point of the Brillouin zone and the other is electron-type and

centred around the Y point111,115. However, there is debate surrounding the

existence of a 3D component to the FS, possibly related to f -electron correla-

tions and the Kondo effect. While angle-resolved photoemission spectroscopy

(ARPES) has found spherical intensity around the Γ and Z points of the Bril-

louin zone110,111, these conclusions have been complicated by the advent of De

Haas-Van Alphen/Quantum Oscillation (QO) experiments on clean, Tc = 2K

samples which find no evidence for a closed, three-dimensional (3D) compo-

nent to the FS116,115,117. Despite these new measurements, several theoretical

works have proposed that some 3D component of the FS should exist for this

strongly correlated system. Calculations employing density functional theory

(DFT) introduce an on-site Coulomb repulsion term U to describe f -electron

correlations118. Tuning this variable from 1 eV to 2 eV results in a Liftshitz

transition of the FS at U ∼ 1.6 eV. An intermediate value of U produces both

the quasi-2D Fermi surface sheets and a pocket which encloses the Z point, con-

sistent with ARPES measurements. An intermediate value for U reflects more

itinerant f -electrons expected for the Kondo effect at low temperature. Fur-

thermore, both tight-binding and DFT+DMFT (dynamical mean field theory)

calculations of the FS reproduce some 3D FS component at low temperature

and ambient pressure119,120. Therefore, theoretical studies of UTe2 suggest that

its FS is dominated by 2D bands but features some 3D components associated

with heavy-electron physics.

To generate a model for the QPI of QSB states we therefore consider a 4-

band tight-binding model which reproduces the cylindrical FS while featuring

some 3D undulations near the Z point of the Brillouin zone to achieve max-

imum consistency between quantum oscillation measurements, ARPES, and

theoretical calculations. The characteristic features are assumed to arise from

the hybridization between two quasi-one-dimensional chains, one originating

from the Te(2) 5p orbitals, and the other from the U 6d orbitals. The lattice

constants are taken to be a = 0.41 nm, b = 0.61 nm, c = 1.39 nm. The

coupling between the two uranium orbitals is modelled by the following Bloch



115

Hamiltonian

HU−U =

(
U1,1 U1,2

U2,1 U2,2

)
(7.1)

U1,1 = U2,2 = µU − 2tU cos(kxa)− 2tch,U cos(kyb) (7.2)

U1,2 = U∗
2,1 = −∆U − 2t′U cos(kxa)− 2tch,U cos(kyb)

− 4tz,Ue
−ikzc/2 cos

(
kx
a

2

)
cos

(
ky
b

2

)
(7.3)

Here the tight-binding parameters are, the chemical potential µU , the intra-

dimer overlap ∆U , the hopping 2tU along the uranium chain in the a direction,

the hopping t′U to other uranium in the dimer along the chain direction, the

hoppings tch,U and t′ch,U between chains in the a-b plane, and the hopping

tz,U between chains along the c axis. Similarly, the coupling between the two

tellurium orbitals is given by

HTe−Te

(
Te1,1 Te1,2

Te2,1 Te2,2

)
(7.4)

Te1,1 = Te2,2 = µTe − 2tch,Te cos (kxa) (7.5)

Te1,2 = Te∗2,1 = ∆Te − tTee
−ikyb − 2tz,Te cos (kz

c

2
) cos (kx

a

2
) cos (ky

b

2
) (7.6)

Where the tellurium tight-binding parameters are, the chemical potential µTe,

the intra-unit cell overlap ∆Te between the two Te(2) atoms along the chain

direction, the hopping tTe along the Te(2) chain in the b direction, the hopping

tch,Te between chains in the a direction, and the hopping tz,Te between chains

along the c axis. We then model hybridization between the uranium and

tellurium orbitals as

HU−Te =

(
δ1 δ2

δ2 δ1

)
(7.7)

And finally the normal state tight-binding Hamiltonian can be written using

the above parts

HUTe2 =

(
HU−U HU−Te

H†
U−Te HTe−Te

)
(7.8)
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Eigenstates of this electronic structure are then expressed

ψ†(k) =
(
c†U1,k,σ

, c†U2,k,σ
, c†Te1,k,σ, c

†
Te2,k,σ

,

cU1,−k,σ̄, cU2,−k,σ̄, cTe1,−k,σ̄, cTe2,−k,σ̄

)
(7.9)

with

c†α,k,σ = (c†α,k,↑, c
†
α,k,↓) cα,k,σ̄ = (cα,k,↓, cα,k,↓) (7.10)

In all calculations below we then use the following values for the tight-binding

model, where all values are expressed in units eV : µU = −0.355, tch,U = 0.015,

t′ch,U = 0.01, tz,U = −0.0375, µTe = −2.25, ∆Te = −1.4, tTe = −1.5, tch,Te = 0,

tz,Te = −0.05, δ1 = 0.13, δ2 = 0. Solving this tight-binding Hamiltonian

for its zero-energy eigenvectors then determines the FS of this UTe2 model.

Note that we have made use of a primitive unit cell Brillouin zone rather

than the full body-centred, orthorhombic Brillouin zone for ease of calculation

however, reciprocal space dimensions of the unit cell remain the same. In Fig.

7.1a we plot a 2D cut of this Fermi surface at the kz = 0 plane. Consistent

with recent measurements116 it consists of two cylindrical-like bands, a hole-

like band centred around the X point and an electron-like band around the Y

point. In Fig. 7.1b we plot the same FS in 3D revealing how these FS cylinders

undulate in the kz direction. Crucially all measurements were performed at

the (0 -1 1) cleave surface of UTe2 thus requiring an understanding of the 2D

projection of this FS to the (0 -1 1) reciprocal plane.

7.3 Fermi Surface Projection

The dimensions of the 1st Brillouin zone are defined by the periodicity of the

crystal structure. In Fig. 7.2a we present two unit cells of UTe2 with the (0

-1 1) cleave plane indicated by the grey shaded plane. Looking down from the

(0 0 1) direction, in Fig. 7.2b, we see that the structure is defined by stacks

of uranium and tellurium atoms and has an x-axis periodicity, a = 0.41 nm

and y-axis periodicity b = 0.61 nm. The subsequent Brillouin zone therefore

has periodicity π/a = 7.66 nm-1 in the x-direction and π/b = 5.15 nm-1 in

the y-direction. Rotating our point of view to the (0 -1 1) cleave surface,

presented in Fig. 7.2c, we see that the x-axis periodicity remains the same

however the horizontal direction is now defined by an inter-tellurium chain
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Figure 7.1: a. 2D Fermi surface (FS) cut at the kz = 0 plane. Blue and pink
FS sheets correspond to the hole- and electron-type Fermi surfaces respecively.
b. 3D plot of the FS used in all subsequent calculations. Colours of the FS
cylinders are the same as a. c. Schematic 2D projection of the 3D FS viewed
perpendicular to the (0 -1 1) plane.

distance c∗ = 0.76 which, in turn defines the limits of the (0 -1 1) surface

Brillouin zone (SBZ). We thus use this periodicity in discussing the horizontal

scale in momentum space.

For scattering wavevectors connecting points of the Fermi surface, rotation

from the (0 0 1) plane to the (0 -1 1) plane results in a change of k-space basis,

defined by the translation vectors ea = (1, 0, 0) and ec∗ = (0, sin θ, cos θ) where

θ = 23.7◦. A kz = 0 wavevector viewed from the (0 0 1) plane (a, b, 0) when

projected to the (0 -1 1) plane becomes ((a, b, 0) · ea, (a, b, 0) · ec∗) = (a, 0.4b).

7.4 Normal State QPI

We can see how this k-space rotation works in practice by studying some ex-

pected scattering wavevectors of the normal state FS. While in theory we could

connect any arbitrary points of the FS and propose this as a scattering wavevec-

tor, in reality we can take information gained from other research to guide our

choice of wavevector. UTe2 is one of many heavy-fermion superconductors121

and thus experiences heavy f -electron hybridization at low temperature. The

effects of this hybridization and the role of heavy fermion physics in UTe2 is

a matter of ongoing study, however, recent quantum oscillation experiments

have pointed towards regions of the normal state band structure where the
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Figure 7.2: a. Two unit cells of UTe2. The unit cell is defined by the dashed
black line. b. Four unit cells of UTe2 viewed from the (0 0 1) direction. The
topmost surface is composed of Te2 atoms which share the unit cell periodicity
a = 0.41 nm and b = 0.61 nm. c. Cleaved surface of UTe2 featuring chains of
tellurium atoms along the x-direction. The x-axis periodicity remains the same
as in b however at this orientation tellurium atoms repeat along the horizontal
direction every c∗ = 0.76 nm.

f -electron contribution is largest122. Heuristically, we can simulate this orbital

contribution by increasing the intensity of these regions of our model FS. The

resulting weighted FS is presented in Fig. 7.3a. These hybridized parts of the

band structure are expected to contribute significantly to the low temperature

density of states and thus should contribute most to scattering. From this we

predict several scattering wavevectors pi, i = 1− 6 which we plot as coloured

arrows in Fig. 7.3a. To simulate the QPI with this simple model, we calculate

the joint density of states (JDOS), J(q, E), which is defined using the spectral

function A(k, E) as below

J(q, E) =

∫
A(k+ q, E)A(k, E)dk (7.11)

To quickly carry out this simulation using our model, in Fig. 7.3, we calculate

the normalized autocorrelation using the Wiener-Khinchin theorem so that

A(k, E) = FFT[A(k, E)] (7.12)

J(q, E) = |IFFT[A(k, E) · A∗(k, E)]| (7.13)

where the spectral function A(k, E = 0) is the FS of Fig. 7.3a with spectral

weight between zero and one. The resulting J(q, E = 0) for this weighted

FS viewed from the (0 0 1) plane is presented in Fig. 7.3b. Our proposed
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scattering wavevectors pi produce high intensity peaks which we highlight

by coloured arrows. The same QPI pattern viewed from the (0 -1 1) plane

would have reduced y-axis components as outlined above. J(q, E = 0) at

this cleave plane is then presented in Fig. 7.3c. It features the full sextet of

scattering wavevectors derived from the weighted FS, however, we now label

these peaks qi to distinguish them from wavevectors of the (0 0 1) plane. At

this new surface the coordinates of our normal state scattering wavevectors

are q1 =
(
0.292π

a
, 0
)
, q2 =

(
0.432π

a
, π
c∗

)
, q3 =

(
0.292π

a
, 2π
c∗

)
, q4 =

(
0, 2π

c∗

)
,

q5 =
(
−0.142π

a
, π
c∗

)
, q6 =

(
0.572π

a
, 0
)
.

In Chapter 4 we discussed the charge density waves (CDWs) and pair

density waves (PDWs) on the (0 -1 1) surface and saw several QPI maps

obtained by FT[dI/dV (r, V )]. The wavevectors of the ordered phases detected

in those experiments, (Q1,Q2,Q3) and (P1,P2,P3) respectively are the same

as the scattering wavevectors discussed above, that is, |q2| = |Q1| = |Q2| =
|P1| = |P2| and |q6| = |Q3| = |P3|. Whatever the source of the charge

and subsequent superconducting orders, it appears likely that these heavy f -

electron regions of the FS are involved in their formation. Of the remaining

sextet of scattering wavevectors, the wavevector q4 is a Bragg peak of the

crystal structure, and wavevectors q1, q3, and q5 while expected from this

naive scattering model, have yet to be seen in the presented measurements.

These wavevectors are particularly relevant to QPI in the superconducting

state, where they help characterize the superconducting order parameter. To

see how, we must consider the effect of various p-wave order parameters on

our tight-binding FS model.

7.5 Nodal Locations on the Fermi Surface

In Section 1.5 we found the dispersion relation for Bogoliubov quasiparticles

is given by Eq. 1.57. The same equation defines the nodes or zeros of the

superconducting order parameter, those regions of the FS which are ungapped

by the superconducting pair potential. Their location is defined as anywhere

on the FS for which ∆2(|d(k)|2 ± |d(k) × d∗(k)|) = 0. For a B1u state with

d ∝ (sin (kyb), sin (kxa), 0) these nodes occur at the points ky = (0,±π/b),
kx = (0,±π/a). For B2u we have d ∝ (sin (kzc), 0, sin (kxa)) and nodes occur

at kz = (0,±π/c), kx = (0,±π/a) and for B3u, d ∝ (0, sin (kzc), sin (kyb))

and nodes are found at kz = (0,±π/c) and ky = (0 ± π/b). By plotting the
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Figure 7.3: a. QSQPI Fermi Surface (FS) model, as seen from the (0 0 1)
direction, with f -electron spectral weight, estimated from Ref. [122], indicated
by black shading. A sextet pi, i = 1− 6, of scattering wavevectors connecting
these hybridized regions of the FS are highlighted using coloured arrows. b.
The joint density of states, J(q, 0) of the weighted f -electron FS in a viewed
from the (0 0 1) direction. The 1st Brillouin zone is outlined in red c. J(q, 0)
from b projected to the (0 -1 1) surface. The y-component of (0 0 1) scattering
wavevectors are transformed to qy = py sin(θ) where θ = 23.7◦. The 1st (0 -1
1) surface Brillouin zone is outlined in red.
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Figure 7.4: a. Superconducting gap function of symmetry B1u on the UTe2
tight-binding Fermi surface defined above. The FS is cut at kz = 0. b.
Superconducting gap function of symmetry B2u on the UTe2 FS. c. The same
as a and c for a superconducting order parameter with symmetry B3u

energy gap magnitude |∆k| for each order parameter throughout kz = 0, as in

Fig. 7.4, we see that nodes occur wherever the dark blue regions (|∆k| → 0)

intersect the FS. Clearly from Fig. 7.4a the minima of a B1u gap function do

not intersect the FS in this model, consequently such a state would have no

nodes and no QSB. In all future discussions we then focus primarily on the

B2u or B3u states.

From the nodal locations derived above, in Fig. 7.4d-f, we present the 3D

QSQPI FS model with theoretically predicted nodes indicated by yellow circles.

The B1u FS features no nodes in this model however, the B2u and B3u have

nodal patterns reflecting their contrasting symmetries with nodes occurring at
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the high-symmetry lines of the y- and x-axis respectively. The projection of

these contrasting FS symmetries to the (0 -1 1) plane should result in starkly

different nodal patterns.

To accurately simulate the FS projection, projected nodal patterns, and

ultimately the superconducting QPI we implement the three candidate order

parameters into our FS model by making use of the Bogoliubov-de Gennes

Hamiltonian once again.

H(k) =

(
HUTe2(k)⊗ I2 ∆(k)⊗ I4

∆†(k)⊗ I4 −H∗
UTe2

(−k)⊗ I2

)
(7.14)

where HUTe2(k) is the Hamiltonian of our tight-binding model and the spin

triplet order parameter ∆(k) = ∆0(d ·σ)iσ2 with ∆0 = 1. The variables I2 and

I4 are unit matrices of dimension 2× 2 and 4× 4, respectively. To implement

order parameters of B2u and B3u symmetry we use the following d-vectors

dB2u = (C1 sin (kzc), C0 sin (kxa) sin (kyb) sin (kzc), C3 sin (kxa)) (7.15)

dB3u = (C0 sin (kxa) sin (kyb) sin (kzc), C2 sin (kzc), C3 sin (kyb)) (7.16)

where a, b, c are lattice constants and C0 = 0, C1 = 300µeV, C2 = 300µeV,

and C3 = 300µeV. The unperturbed bulk Green’s function is then

G0(k, E) = [(E + iη)I −H(k)]−1 (7.17)

where η is the quasiparticle broadening parameter. The corresponding unper-

turbed spectral function is

A0(k, E) = −1/π Im{Tr(G0(k, E))} (7.18)

We can project these bulk spectral functions to the (0 -1 1) plane by integrating

A0(k, E) along the normal to the (0 -1 1) plane. Performing this kind of

calculation allows us to understand the projected band structure at this plane.

Fig. 7.5a is the projected A0(k, E = 0) for UTe2 in the normal state. The

primary contribution from the Fermi surface at this plane stems from the

regions of the FS with 3D character. By implementing the B1u, B2u, and B3u

gap functions into this model we can also calculate the projected A0(k, E = 0)

in the superconducting state and use this to guide our understanding of the

nodal pattern of these geometrically different p-wave order parameters. To do
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Figure 7.5: a. Bulk quasiparticle spectral function A0(k, E = 0) for the (0
-1 1) surface of UTe2 in the normal state. Bulk contributions are dominated
by the projected components of the Fermi surface (FS) with 3D character. b.
A0(k, E = 0) calculated in the superconducting state for an order parameter
of B1u symmetry. No nodes are seen for B1u in this model as zeros of the
pair potential do not cross the FS. c. A0(k, E = 0) calculated for an order
parameter of B2u symmetry. Nodes at kz = (0,±π/c) and kx = (0,±π/a) are
projected to the (0 -1 1) surface forming lines of nodes which are highlighted
by yellow circles. d. A0(k, E = 0) for an order parameter of B3u symmetry.
Nodes lie on the regions of the normal state FS which contribute most to the
projected spectral function.

so we must use sufficiently low damping η = 10µeV and extremely high out

of plane k-space sampling rate PNk
= 500, 000. Fig. 7.5b-d are the projected

bulk spectral functions at the (0 -1 1) plane for B1u, B2u, and B3u. Once again

the spectral function mostly consists of the the projected 3D sections of the

FS which even at E = 0 contributes because of the weak p-wave gap and finite

thermal broadening. In Fig. 7.5c and d we highlight the regions of increased

intensity with yellow circles. These are the expected point nodes of the B2u

and B3u gap functions and their location in momentum space determines the

position and intensity of the QSB at this cleave surface.

7.6 Quasiparticle Surface Bands (QSBs)

While the projection of the bulk spectral function can give us some insights

into the nodal locations and bulk scattering, it cannot account for states ex-
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isting only at the surface and their contribution to the spectral weight at the

(0 -1 1) cleave plane. As we discussed in Chapter 5, there are many ways of

topologically classifying a material however without the presence of a closed FS

pocket the topological classification of UTe2 cannot be considered a straight-

forward nodal, weak topological superconductor. However, a literature exists

which succeeds in defining topological invariants for UTe2 with a cylindrical

band structure similar to that considered herein123,124. These weak topological

phases are dependent on the usual global symmetries and also on crystal sym-

metries making UTe2 a topological crystalline superconductor. Constructing

similar crystalline topological invariants for our QSQPI band structure is a

future research goal. As we will see, our surface spectral function simulations

suggest that flat bands of zero-energy surface states exist on the (0 -1 1) sur-

face. Whether these states are protected by topological invariants remains to

be seen. We therefore distinguish the zero-energy states discussed in this QPI

project by referring to them as quasiparticle surface bands (QSBs) in contrast

to the previous chapter which features TSBs due to the topological protection

guaranteed by the spherical FS. What remains clear regardless of theory, is

that a zero-energy Andreev bound state is present at the (0 -1 1) surface of

UTe2 and is likely the result of p-wave superconductivity in bulk.

The unique physics of these p-wave and potentially topological surface

states then envisages the bulk nodes playing a central role in any QSB125.

Theory predicts that their k-space locations are projected onto the surface

Brillouin zone (SBZ) and, moreover, that a contour of zero-energy QSB states

(Fermi arc) connects pairs of projected nodal wavevectors97. In Fig. 7.6a and c

we present the projection of the B2u and B3u point nodes to the (0 -1 1) plane

as derived from Fig. 7.5. It is then expected that QSB scattering should be

dominated by regions between nodes which we illustrate schematically in Fig.

7.6a,c by coloured scattering wavevectors connecting red inter-nodal regions.

We thus derive a nonad of scattering wavevectors for the B2u order parameter,

qB2u
i , i = 1− 9 and a sextet of scattering wavevectors qB3u

i , i = 1− 6 for a B3u

order parameter which should dominate low energy (E < |∆k|) scattering.

This B3u sextet of wavevectors is in fact quantitatively very similar to that

derived from the weighted FS model above however at zero-energy we now

observe scattering between QSB states on the projected FS. We overlay both

sets of scattering wavevectors onto a larger q-space FOV in Fig. 7.6b,d to view

the expected QPI wavevectors for each order parameter. This simple analysis
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makes clear the geometric differences intrinsic to the projection of the nodes

from the B2u and B3u order parameters and how this geometry effects the

anticipated QSB.

To capture these geometric differences in our simulation we once again make

use of low damping (η = 10µeV) and high k-space sampling (PNk
= 500, 000)

to simulate the bulk spectral function A0(k, E) and then derive the surface

spectral function As(k, E). While obtaining the bulk unperturbed Green’s

function G0(k, E) is straightforward, calculating the surface Green’s function,

Gs(k, E) and spectral function As(k, E) requires introducing a strong planar

impurity potential using the T-matrix technique as in Ref. [126]. In the limit

of an infinite impurity potential the surface Green’s function can be found

exactly. From this, we acquire the surface spectral function

As(kx, kc∗, E) = − 1

π
Im{Tr[Gs(kx, kc∗, E)]} (7.19)

In Fig. 7.7a,c we plot the surface spectral function derived for UTe2 with B2u

and B3u symmetry. We highlight the projection of the bulk nodal locations,

derived from A0(k, 0), using yellow circles. Just like our prediction in Fig. 7.6,

we find that QSB states occupy regions of momentum space connecting the

projection of the bulk nodes. In Fig. 7.7b,d we present the JDOS, calculated as

above using our As(k, 0) images. Here we plot the q-space region kx = ±π/b,
kc∗ = ±π/c∗ as this is the main region of interest for our QSB scattering. In

Fig. 7.7b,d we overlay the wavevectors of the nonad and sextet which feature

in this q-space field of view (FOV). It is important to note the similarities

between Fig. 7.7d and Fig. 7.3c, the JDOS derived from the f -electron regions

of the FS and rotated to the (0 -1 1) plane. The features within the red box of

Fig. 7.3c are strikingly similar to that obtained by the JDOS of the B3u QSB

spectral function. This is because the nodes and subsequent QSB of B3u form

on regions of the FS which contribute significantly to normal state scattering.

7.7 Final QSB QPI Simulations

From the above analysis it appears that the QPI patterns produced from the

B2u and B3u order parameters should be clearly distinguishable in QPI mea-

surements however, to now, we’ve focused on an unrealistic limit of our model,

one in which quasiparticle damping is low, k-space sampling rates are imprac-
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Figure 7.6: a. Projection of the bulk B2u nodes to the SBZ. An illustration
of QSB occupation is indicated using red intensity. A nonad of scattering
wavevectors pi, i = 1− 9 connect these regions and should contribute strongly
to scattering near zero-energy. b. Nonad of expected QPI scattering wavevec-
tors for a B2u order parameter. c. Projection of the bulk B3u nodes to the
SBZ featuring illustrative, red QSB intensity. A sextet of scattering wavevec-
tors connects regions of maximum QSB intensity d. Sextet of expected QPI
scattering wavevectors for a B3u order parameter.
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Figure 7.7: a. Surface spectral function As(k, 0) calculated using an order
parameter of B2u symmetry. The location of nodes as derived from Fig. 7.5
are indicated by yellow circles. b. The joint density of states J(q, 0) of B2u

As(k, 0). Peaks from the nonad of wavevectors qi, i = 1 − 9 are presented
as coloured arrows. c. As(k, 0) calculated using an order parameter of B3u

symmetry. A strong QSB forms between the projection of the bulk nodes to
the (0 -1 1) surface. d. J(q, 0) calculated using As(k, 0) of B3u. Three peaks
from the B3u sextet are indicated with coloured arrows. This joint density of
states calculation is similar to that in Fig. 7.3c due to the unique position of
B3u point nodes on the UTe2 Fermi surface.
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tically high, and scattering is between all spin states. We’ve discussed these

simulations because they confirm our understanding of the nodal pattern and

subsequent QSB expected for these two odd-parity order parameters. However,

we will now see that in a realistic model the low-energy scattering in the su-

perconducting state can still feature significant contributions from the normal

state FS making order parameter identification significantly more difficult.

To perform measurements in the superconducting state of UTe2 our STM

head is cooled to T = 0.28K. Thermal fluctuations at this temperature limit

the energy resolution of our measurements as they contribute energy of the

order kBT to the system, where kB is Boltzmann’s constant. At T = 0.28

K these fluctuations are then kBT ∼ 25µeV. For experimental comparison,

we increase the quasiparticle broadening parameter in our calculations to η =

30µeV. Critical to this final analysis is that we now calculate the correction to

the local density of states (LDOS) δρ(k, E) =
∫
drδρ(r, E)e−ik·r rather than

the joint density of states J(q, E). This correction to the LDOS is a more

accurate technique in simulating QPI results as it takes into account not only

the magnitude of the spectral function (as used in JDOS calculations) but the

full structure of the T-matrix, which includes spin selection rules and both

constructive and destructive quasiparticle interference. Furthermore, STM is

a probe of the LDOS and by Fourier transform of this quantity one observes

the correction to the LDOS from the QPI patterns, dI/dV (q, E). We define

δρ(q, E) from the perturbed generalized Green’s function where

δρ(q, E) =
i

2π

∫
d2q

SBZ

Tr[g(q,k, E)] (7.20)

where the perturbed generalized Green’s function is

g(q,k, E) = Gs(q, E)T (E)Gs(q−k, E)−G∗
s(q−k, E)T ∗(E)G∗

s(q, E) (7.21)

Because δρ(q, E) is, in general, a complex quantity, all simulations presented

herein are |δρ(q, E)|. The energy resolved surface spectral function As(k, E)

for our model with B2u and B3u order parameter symmetries is featured in

Fig. 7.8a and b respectively. Clearly, the B3u results are almost unchanged

with these new parameters, however, the B2u spectral function is significantly

different. Its nodal pattern lies almost entirely on parts of the FS which con-

tribute weakly to the surface spectral function. The resulting QSB is therefore

weakened significantly with increasing damping. We can then expect the QPI



129

Figure 7.8: a. Surface spectral function As(k, E) for a B2u order pa-
rameter at energies E = 0, 50µeV, 100µeV, 150µeV, 200µeV, 250µeV. With
more reasonable thermal broadening the nodal contribution to the sur-
face spectral function is small and at zero-energy only weak contribu-
tions from the B2u QSB are observed. b. As(k, E) at energies E =
0, 50µeV, 100µeV, 150µeV, 200µeV, 250µeV for a B3u order parameter. The
nodes residing on the 3D components of the Fermi surface generate a QSB
which dominates low-energy scattering up to the superconducting gap edge.

of a FS with B2u order parameter symmetry to be largely the same as that

from the normal state and, as we’ve seen in Fig. 7.7d the QPI expected of

a FS with B3u symmetry is geometrically similar to the bulk band structure

scattering.

7.8 Normal State & QSB QPI Measurements

Our low-energy scattering calculations, both in the normal and superconduct-

ing state, have revealed that the signatures of the order parameter symmetry

should be difficult to distinguish from the normal state FS contributions. The

difference in scattering between the normal and superconducting states can be
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directly studied by measuring dI/dV (r, V ) ≡ g(r, V ) within the same FOV

at T = 4.2K and T = 0.28K. In Fig. 7.9a we present normal state differ-

ential conductance g(r, E = 0) recorded in a 66nm FOV under tunnelling

setpoint conditions Vb = 3mV, Is = 200pA. This data has been sheared and

LF corrected to allow exact registration with our superconducting state mea-

surements. In Fig. 7.9b we present the Fourier transform of a, g(q, E = 0).

As we noted previously, q2 and q6 are the normal state CDW wavevectors

and in the superconducting state PDW modulations are induced at the same

wavevectors. We note that q6 is weaker in this measurement than in previous

g(q, E) figures because these measurements make use of a tip condition which

appears more sensitive to short wavevectors. q4 is a result of the lattice period-

icity and occurs at the point (0, 2π
c∗
). The short wavevectors are of particular

interest in this study and in the normal state we observe arc-like intensity

which links q = 0 with q5. In the normal state this intensity is the result

of scattering between the hole-like FS of adjacent UTe2 Brillouin zones. For

UTe2, they are stacked in the kz direction with an offset of δkz = π/c between

them allowing the q5 wavevector to trace out the contours of the band around

the X point. Our heuristic model of f -electron scattering appears consistent

with these T = 4.2K measurements (see Fig. 7.3a). However, in contrast to

Fig. 7.3c, we do not observe q1 nor the higher order peak q3 in these normal

state measurements. The q1 peak in particular will prove important, however,

we must first compare these experimentally derived normal state scattering

wavevectors with those in the superconducting state.

Cooling down our STM system to T = 0.28K, we perform the same mea-

surements as above while UTe2 is in the superconducting state. A notable

difference between these measurements is that, in the superconducting state,

the in-gap tunnelling mechanism is not normal single particle tunnelling but

instead, resonant Andreev tunnelling. In Chapter 6 we established the use of

superconducting tips as direct probes of QSB quasiparticles however, we can

study the differences between these normal and superconducting tip measure-

ments by directly comparing the resulting Fourier transform of their differen-

tial conductance maps. This is done in Appendix E. Particularly, in Appendix

Fig. E.1b we plot g(q, 0) acquired using a normal metal tip and in Appendix

Fig. E.1d we plot the Fourier transform of this Andreev conductance a(q, 0),

acquired using a superconducting tip. There are several common character-

istics including the arc-like feature connecting q = 0 and q5 and the peaks
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Figure 7.9: a. g(r, E = 0) measured at T = 4.2K in the normal state of UTe2.
Measurements are performed in a 66nm FOV with tunnelling bias voltage
Vb = 3mV and setpoint current Is = 200pA. b. The Fourier transform of
a, g(q, 0). Four of the sextet of scattering wavevectors introduced above are
observed in the normal state at the (0 -1 1) surface. These are highlighted
using coloured arrows
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at q2, however, the scattering features are strongly enhanced by the use of

the superconducting tip. This is expected if we assume that the zero-energy

Andreev conductance is proportional to the amplitude of QSB wavefunctions.

Then spatial interference of QSB wavefunctions should manifest themselves as

spatial variations in a(r, E), and subsequent Fourier transform of this quan-

tity, a(q, E) should allow high signal-to-noise measurements of QSB QPI at

the surface of UTe2.

Now in Fig. 7.10a we plot the measured Andreev differential conductance

a(r, E), recorded at T = 0.28K in the same FOV as Fig. 7.9a above under ex-

actly the same junction conditions Vb = 3mV, Is = 200pA. Fig. 7.10b reveals

the high signal-to-noise scattering measurements made possible by the super-

conducting tip. This zero-energy QPI image, a(q, 0), reveals the complete

sextet qi, i = 1 − 6 derived now from several considerations of the pairing

symmetry and band structure. To make clear the shift in the relative intensity

of these scattering wavevectors, in Fig. 7.10c we plot the normalized intensities

of g(q, 0) (orange) and a(q, 0) (blue) taken along horizontal linecuts indicated

in Fig. 7.10b by the white arrows. We normalize the scattering intensity of

both QPI maps by setting regions of background (BG) noise to g(qBG, 0) = 1

and a(qBG, 0) = 1. Clearly all peaks, except for q2, are enhanced at T = 0.28K

however we note that, in general, q6 is only weakly enhanced at these tem-

peratures and appears unrelated to superconductivity. By contrast, features

at small wavevectors are strongly enhanced at these temperatures with clear

peaks appearing at q5 and enhanced scattering connecting q = 0 and q5. Most

notable is the appearance of q1 which exists only at these temperatures and for

energies within the bulk gap of UTe2 i.e. for V < 300µV. These QPI features

are typical for a(q, 0) and we include repeated measurements of this sextet,

recorded at T = 0.28K, in Appendix F.

7.9 QSB QPI Theory-Experiment Correspon-

dence

With our realistic band structure and surface spectral function projection

methods, we now present the energy-resolved QPI patterns δρ(q, E), calcu-

lated using the T-matrix method outlined in Section 7.7 and explained in

detail in Ref. [126]. In Fig. 7.11a, we present δρ(q, E) for an order parameter

of B2u symmetry calculated using the surface spectral functions seen in Fig.
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Figure 7.10: a. Andreev differential conductance a(r, 0) recorded at T = 0.28K
in a 66nm FOV. The setpoint bias voltage is Vb = 3mV and the setpoint current
is Is = 200pA. This map has been shear and LF corrected to allow accurate
registration between corresponding measurements at T = 4.2K as presented in
Fig. 7.9. b. Fourier transformed Andreev conductance map a(q, 0) revealing a
sextet of scattering wavevectors indicated by coloured arrows. c. QPI linecuts
recorded along the horizontal lines indicated with white arrows in b. Intensities
are normalized using background noise levels of their corresponding QPI maps,
g(q, 0) and a(q, 0). Several wavevectors are enhanced in the superconducting
state, particularly q5. The wavevector q1 appears only in the superconducting
state and for energies within the superconducting energy gap
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7.8. We focus on the q-space region (±π/a,±π/c∗). Clearly, the QPI pattern

closely resembles the normal state scattering observed at T = 4.2K in Fig.

7.9b, with peaks at q2 and weak arc-like intensity connecting q = 0 and q5.

The distinctive nonad of B2u scattering wavevectors qi,i = 1−9 we anticipated

from the low damping spectral function are not seen in this calculation as the

normal state FS dominates the low-energy scattering. This simulation can

also be compared to the QPI in the superconducting state, a(q, E) presented

in Fig. 7.11c. There are numerous similarities between a(q, E) and these B2u

QPI simulations, however, these common features are inherited from the nor-

mal state band structure as evidenced by our QPI measurements at T = 4.2K.

There are no distinct QSB scattering features in this B2u simulation, how-

ever, even if its QSB were relevant, its nonad of wavevectors would be easily

recognized in our measurements.

In Fig. 7.11b we present δρ(q, E) for our UTe2 band structure in the

presence of an order parameter with B3u symmetry. Its sharp features are the

result of the prominent QSB spectral weight near zero-energy which we saw in

Fig. 7.8. The results of QSB scattering are then the enhancement of scattering

features, in particular, more dominant scattering in the region connecting q =

0 and q5 at zero-energy. The B3u QSB forms near those nodes on the ky = 0

line of the hole-like band surrounding the X point of the Brillouin zone which,

as we outlined in our simple f -electron scattering model, produces this arc-like

scattering. Notably in neither the B2u nor the B3u calculations do we see a

distinct peak at q5. This particular peak is only seen at low temperatures

T = 0.28K but also appears at energies outside of the superconducting gap

thus suggesting it is a normal state feature, enhanced at low temperatures, and

possibly related to the CDW mechanism at this surface. Finally, the peak at

q1 is the most important of our superconducting state scattering features. It

appears only in the superconducting state and only within the superconducting

energy gap of UTe2. While it is a natural scattering wavevector in our naive

band structure JDOS, as in Fig. 7.3, in a more detailed model, like that used

for our QPI calculations here, scattering at this wavevector is not allowed due

to spin scattering rules included in the T-matrix. From our detailed theory

calculations we only find this peak when considering an order parameter of

B3u symmetry. The uniqueness of q1 in this superconducting phase is a result

of spin-momentum locking of the QSB eigenstates. In Fig. 7.12 we present

the spin and energy resolved surface spectral function for the B3u QSB. Due
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Figure 7.11: a. Predicted QPI patterns, δρ(q, V ) for a UTe2 band structure
model with p-wave order parameter symmetry B2u. Contributions from the
bulk band structure make QPI with this order parameter symmetry similar to
the normal state QPI observed in Fig. 7.9. b. δρ(q, V ) for a UTe2 band struc-
ture model with order parameter symmetry B3u. Several scattering features
are unique to this order parameter symmetry including enhanced scattering
between q = 0 and q5 at zero-energy and, most critically, the presence of scat-
tering wavevector q1. c. Experimentally measured QPI a(q, V ) cropped from
the same dataset as seen in Fig. 7.10. The wavevector q1 appears only in the
superconducting state for energies within the superconducting energy gap.
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Figure 7.12: The surface spectral function As(k, E) for a B3u QSB where spin
aligned along the x direction is coloured blue and spin in the −x direction is
shown in red. Only B3u allows spin conserved scattering in the x direction
producing the wavevector q1 near zero-energy.

to B3u’s unique dependence on the z and y coordinates, eigenstates of the

QSB have the same spin at +qa and at −qa thus allowing spin-conserved

scattering in the x direction. Neither B1u nor B2u exhibits this symmetry and

therefore, do not allow scattering to appear at q1. Based on this series of

theoretical calculations and experimental results we therefore conclude that

the zero-pressure, zero-field, low-temperature superconducting phase of UTe2

is one with B3u symmetry.



Chapter 8

Final Remarks

The results of this thesis can largely be divided into two parts; the discovery of

a spatially modulating superconducting order parameter or pair density wave

(PDW) at the surface of UTe2, and the detection and characterization of the

zero-energy surface state by spectroscopy and quasiparticle interference. Both

research projects are based on the observation of unusual superconducting

states and it is this which defines the overall focus of this thesis.

The detection of PDWs on the surface of UTe2 is now one of many recent

reports of modulating energy gaps and Cooper pair density in unconventional

superconducting systems29,28,79. In the time since publication of Ref. [30] there

has been further investigation into the behaviour of the CDW and PDW in this

system. The CDW has since been found to melt with increasing magnetic field

via the generation of phase dislocations or topological defects127 pointing to

the importance of magnetic field interactions with the CDW. By cycling tem-

perature and magnetic field Ref. [128] find that the CDW develops in the same

local regions of the surface despite melting and reforming. The same report

hypothesizes the onset of magnetic order or short-range magnetic correlations

as the driving mechanism for the CDW. As shown in Fig. 7.3a, normal state

scattering features appear to be related to the f -electron hybridization of the

Fermi surface. The CDW and induced PDW therefore appear related to the

heavy fermion nature of UTe2, a subject in need of further study. Of partic-

ular importance in understanding the mechanism responsible for this CDW

is the recent observation that the CDW is confined only to the (0 -1 1) sur-

face129,130,131. Owing to the local character of the CDW, PDW, and magnetic

interactions SI-STM remains an ideal probe for further investigation into these

ordered phases.
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Of particular importance to this thesis is the role of the superconducting

niobium scan tip used for PDW and zero-energy state detection. The dis-

covery that such s-wave tips permit resonant Andreev tunnelling to Andreev

bound states opens the way to direct tunnelling measurement of surface states

in other unconventional superconductors and especially in other p-wave candi-

dates. Furthermore, the conclusions derived from tunnelling dependent mea-

surements are quite general and could be of further use in distinguishing chiral

from non-chiral superconducting states in other materials. Again, it is because

of the superconducting scan tip that high-resolution, low-energy QPI measure-

ments have become possible for UTe2. Our resulting study of UTe2’s normal

and superconducting state QPI pattern revealed that the appearance of low

q scattering wavevectors around q5 and at q1 are indicative of an odd parity

superconducting state with the symmetry B3u of the crystal point group D2h.

The combined theoretical and experimental approach of these investigations

can be applied to the any of the known p-wave candidates thus providing an

avenue for future SI-STM measurements which may help greatly in classifying

the odd parity order parameters of these materials.

While the study of p-wave superconducting condensates enters its sixth

decade we hope that the discovery of UTe2’s superconducting properties sig-

nals the arrival of more candidate odd parity materials. Should these materials

be developed, researchers must be ready with a combined theoretical and ex-

perimental framework for their classification. We hope that the research pre-

sented herein provides a robust framework with which to detect these unusual

superconducting states by SI-STM researchers in the future.



Appendix A

ARCHAOS

A.1 Introduction

Almost all measurements presented in this thesis were carried out in Cornell

University using the old, yet extremely productive 3He SI-STM system there,

ARCHAOS. We therefore briefly introduce the key components of this STM

which have allowed it to successfully probe many forms of quantum matter

using stable dI/dV mapping over several days.

A.2 Cryogenics

Measurements of all superconductors require cryogenic temperatures, the high-

est Tc among superconducting systems at ambient pressure is that achieved

by Hg0.8Tl0.2Ba2Ca2Cu3O8 + δ with Tc = 138 K [132]. The family of heavy-

fermion superconductors have much lower transition temperatures, for the

UTe2 samples studied herein the transition temperature is Tc ∼ 1.6 K there-

fore, sub-Kelvin temperatures are required to study this material deep in the

superconducting regime.

To achieve such temperatures, the STM and its cryogenic insert (Fig. A.1)

are kept inside a cryogenic storage dewar. In order to cool from room tempera-

ture, ∼ 100 litres of liquid nitrogen (LN2) are pushed into the STM dewar from

a transfer storage dewar until a stable base temperature of 77 K is achieved.

Subsequently, the LN2 is pushed out using 4He gas and ∼100 L of liquid 4He,

obtained from the Clark Hall helium liquefaction facility, is transferred to the

experimental dewar. Once this process is complete the cryogenic insert and

STM scan head are thermally equilibrised to ∼4.2 K. This is still nearly three

139



140

times the transition temperature of UTe2 thus further cooling is required.

By taking advantage of evaporative cooling, by pumping on 4He for exam-

ple, the temperature of the STM cryogenic insert can be lowered further as the

vapour pressure of a gas is strongly dependent on temperature Pvap. ∝ e−
L
RT .

This evaporative cooling is eventually balanced by the inflow of heat from the

surrounding environment however, temperatures as low as T ∼ 1.5 K, while

pumping on liquid 4He, and T ∼ 0.28 K for 3He can be achieved via this

method. This approach is the one taken in ARCHAOS. By adding 4He gas to

the“1K pot” it becomes liquified as the ambient temperature of the insert is

4.2 K. Pumping on this liquified helium then cools the 1K plate of the insert to

∼ 1.5 K. During this process 3He gas contained within the 3He line condenses

in the 3He pot. By lowering a canister containing activated charcoal to the 4 K

plate the, now evaporating, 3He adsorbs to the large surface area of the char-

coal granules thus reducing the vapour pressure and cooling the surrounding

environment. Through this method the STM head can reach temperatures of

T ∼ 0.28 K, well within the superconducting state of UTe2.

Lastly, we note that cryogenic temperatures are also critically important in

maintaining a vacuum environment. While the insert is pumped to a pressure

of ∼ 10−6 mbar by a turbomolecular (turbo) pump, this pump is subsequently

turned off during measurement at which point the STM head has been cooled

to T ∼ 0.28 K. At such temperatures, free atoms or molecules adsorb to the

cold interior surfaces of the insert and vacuum can. Furthermore, the vapour

pressure of all gases at such temperatures is order of magnitudes lower than

can be achieved by room temperature pumping alone thereby safeguarding the

sample from environmental impurities.

A.3 Vibration Isolation

As outlined in Chapter 2, the tunnelling current, the key observable in STM, is

exponentially dependent on the tip-sample distance. This current is therefore

very sensitive to vibrational noise, particularly noise acting in the direction

perpendicular to the sample surface. All SI-STMs therefore require vibration

isolation. The isolation measures employed for ARCHAOS are presented in

Fig. A.1a. The STM insert and its dewar are bolted to a room temperature

plate at which the vacuum and gas systems connect. This plate is then floated

on air springs supplied with compressed nitrogen gas. The STM room is elec-
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Figure A.1: a. Schematic of ARCHAOS vibration isolation systems. The
table and legs supporting the STM dewar and insert are filled with lead to in-
crease mass and dampen high frequency vibrations. Air springs further isolate
the STM room and table from external vibrations intrinsic to the laboratory
building. b. Schematic of the internal cryogenic systems indicated in b by the
dashed black box. These illustrations are not to scale.
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tromagnetically shielded from the surrounding environment via a metal cage

and its entrance is sealed by acoustic doors. Furthermore, the STM room is

built upon a concrete block supported on the Clark Hall basement foundations

by large air springs further isolating the experiment from environmental noise.

A.4 STM Head

The immense infrastructure required for an STM is all in support of stable

operation of the STM scan head. The scan head used in ARCHAOS is of

a similar design to that featured in Ref. [133]. It consists of a macor body

inside which is the walker, a central sapphire prism firmly pressed against six

stacks of piezoelectric crystals. Supplying a voltage slowly to these coarse

motor stacks in sequence causes them to expand, moving the prism upwards,

removing this voltage quickly and simultaneously allows the stacks to slip

back to their neutral position while keeping the prism in place. This process

allows large (∼ 100 nm) steps in the z direction. The fine x -y and z motion

is performed by the scan tube which runs through the centre of the prism.

This scan tube is a thin cylinder of piezoelectric material with four external

electrodes. When voltage is applied to any one of the electrodes the tube

bends towards the applied voltage. By applying voltage to an inner electrode

all the piezo electrodes expand together allowing fine vertical motion of ∼ 30

nm. Measurements therefore require tens of thousands of coarse motor steps to

near tunnelling current distances from full walker withdrawl, following this the

scan tube is extended slowly until a setpoint tunnelling current is measured.

Samples to be inserted to the STM are initially glued to a brass sample

stage using electrically and thermally conductive epoxy. An aluminium cleave

rod, approximately the same diameter as the surface, is then glued to the easy

cleave surface of the sample. The sample stage is then attached to the end

of a transfer rod and inserted to the vacuum sealed upper chamber of the

insert. This chamber is then evacuated and the transfer rod is pushed down

through the insert, halting at each stage to thermalize with the surrounding

environment. Upon passing through the 3He stage the cleaver is activated,

sweeping the cleave rod from the sample and collecting it in a stainless steel

bucket (Fig. A.1b). Finally the sample stage is pressed into the OFHC copper

plate at the top of the STM head and secured by rotating its copper arms into

slots in the head. A labelled photo of the ARCHAOS STM head is featured
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Figure A.2: Labelled photo of ARCHAOS STM scan head in position at the
sample plate of the cryogenic insert

in Fig. A.2.

A.5 Measurement & Control Electronics

Tunnelling current between the scan tip and sample under study can be as

low as several hundred femto-amps. Measurement of this current is therefore

subject to electronic noise. To isolate this signal from the surrounding environ-

ment, the current is transferred through NbTi coaxial cable to a commercial

current to voltage pre-amplifier (DL Instruments Model 1211) of gain 10−9

A/V. Crucially, the noise level of this pre-amplifier is very low, ∼ 5 fA/
√
Hz.

The resulting voltage is then converted to a digital signal via the Nanonis

signal conversion interface (SC5) from SPECS. Furthermore the SC5 allows

digital signals from the measurement computer to be converted to analog,

thus allowing control of the bias voltage and scan tube piezos. Topographic

imaging, dI/dV mapping, and other STM operations rely upon PID control

of the piezo scan tube and this is carried out via software control from the

measurement computer and Nanonis real-time controller (RC5) which houses

the Nanonis CPU. The signal is then amplified using the Nanonis high-voltage
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amplifier (HVA4). This commercial suite of nano positioning circuitry and

software allows precise control of the STM scan tip allowing atomic resolution

of superconducting samples.



Appendix B

PDW Fitting

We have made the claim that the use of superconducting scan tips in STM can

improve the energy resolution of gap map measurements considerably. To bet-

ter support this conclusion we describe the fitting procedure used to determine

the energy of coherence peak maxima for both normal and superconducting

tips. As the superconducting energy gap of UTe2 is approximately 300 µeV,

normal tip gap map measurements can be carried out in an energy range

broader than the full 2|∆UTe2| gap, in the measurement shown below we vary

the bias voltage from −500µV to 500µV in steps of 25µV while recording a dI
dV

measurement at each bias voltage step. After the dI
dV

map has been completed

we then aim to extract the energy of coherence peak maxima. To do so, we

fit the energy interval −400µeV to −75µeV for the negative coherence peak,

and 125µeV to 350µeV for the positive coherence peak with a polynomial of

the form

g(V ) = aV 2 + bV + c (B.1)

An example polynomial fit for the normal tip positive coherence peak is shown

in Fig. Ba. To visualize the fitting quality of the positive and negative coher-

ence peaks over the entire experimental FOV we introduce the fitting quality

coefficient

R2(r) = 1−
∑N

i=1 [g(r, Vi)− dI/dV (r, Vi)]
2∑N

i=1 [g(r, Vi)− ḡ(r)]2
(B.2)

where dI/dV (r, Vi) is the measured spectrum at position r and voltage Vi,

g(r, Vi) is the fitted spectrum at the same position and voltage, and ḡ(r) is

the average fitted spectrum. We calculate this coefficient at every pixel in

our normal tip gap map. The resulting normal tip R2 map for the positive

coherence peak is shown in Fig. B.1b and the same map for the negative
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coherence peak is shown in Fig. B.1c. Clearly, the normal tip gap map data

is poorly fitted by this polynomial fit. To estimate the fit quality over the

whole FOV we calculate R2
RMS of the R2 map for this normal tip data and find

R2
RMS+ = 0.94 and R2

RMS- = 0.94 for the positive and negative coherence peaks,

respectively. Not only is this fitting quality insufficient, but the poor fitting is

distributed broadly around the map due to the poor spectral resolution. This

explains the weak signal-to-noise ratio of the PDW peaks P1,P2,P3 seen in

Fig. 4.1d.

After registration of superconducting tip positive and negative coherence

peak maps, we can fit this data with the same polynomial function as above.

An example fit for the combined positive coherence peak ∆Nb+UTe2 is shown in

Fig. Bd. The data is much more closely fitted by this polynomial and this can

be seen clearly over the entire FOV in Fig. B.1e and Fig. B.1f for the positive

and negative coherence peaks, respectively. The predominance of white pixels

is indicative of excellent fit quality. The positive and negative superconducting

tip coherence peak maps exhibit R2
RMS values of 0.98 and 0.99, respectively.

From this analysis, it is clear that the pronounced coherence peaks and low

noise of the combined Nb-UTe2 spectra allow PDW detection with energy

resolution in the 10µeV range.
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Figure B.1: a. Example spectrum showing the positive coherence peak of UTe2
detected by normal tip tunnelling spectroscopy (NIS). Data is shown in black
dots and a second order polynomial fit is shown overlaid in red. b. Fitting
quality coefficient, R2(r)NIS+ for the positive coherence peak, calculated at
each pixel in the normal tip FOV. c. R2(r)NIS- calculated at each pixel for the
negative coherence peak. d. Example spectrum showing the positive coherence
peak of the combined Nb-UTe2 superconducting energy gap. Data is shown by
black dots and the polynomial fit is overlaid as a red line. e. Fitting quality
coefficient, R2(r)SIS+ for the positive combined coherence peak, calculated at
each pixel. e R2(r)SIS- for the negative coherence peak. The dominance of
white pixels in both e and f is indicative of the improved fitting resulting from
the use of a superconducting scan tip.



Appendix C

Josephson versus Andreev

Tunnelling

Crucial to the interpretation of the results presented in Section 6, is that the

zero-energy peak in differential conductance is the result of Andreev tunnelling

between the s-wave scan tip and p-wave sample. As discussed in Section

2.4.2, Josephson tunnelling may also produce peaks in differential conductance

centred at zero bias voltage therefore, to distinguish between the Josephson

and Andreev effects, we study the behaviour of our zero-energy peak.

Firstly, we note that the zero-energy peak observed is significantly larger

than that expected from the Josephson effect at equivalent tip-sample dis-

tances. This can be demonstrated clearly by plotting the measured zero-energy

Andreev conductance a(0) against that of a typical SJTM measurement. For

comparison, we plot the Josephson conductance measured for a Nb - NbSe2

tunnel junction. Such a junction, between two s-wave superconductors, with

energy gap magnitudes several times that of UTe2, is expected to allow Joseph-

son currents much larger than those of an s-wave to p-wave tunnel junction

[134]. This plot is presented in Fig. C.1a. At high junction resistance RN ∼ 3

MΩ, the Andreev conductance between UTe2 and Nb is already an order of

magnitude larger than that measured for Josephson coupling between s-wave

superconductors. As the junction resistance is reduced, the Andreev conduc-

tance (blue) and Josephson conductance (red) behave entirely differently. The

Andreev conductance increases quasi-linearly while the Josephson conductance

grows as g(0) ∝ 1/R2
N as expected from Eq. 2.40. At low junction, RN ∼ 1.5

MΩ, the Andreev conductance at zero-energy begins to drop, as this intensity

splits into two energy-symmetric maxima which further diverge with decreas-
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ing junction resistance. The Josephson conductance, by contrast, continues to

increase as 1/R2
N .

Lastly, we note that even the shape of the unsplit Andreev conductance

peak provides indications that it is not the result of Josephson tunnelling.

Equation 2.37 can be used to estimate the magnitude of the Josephson current

in the phase-diffusive regime. Differentiation of this quantity with respect to

the applied bias voltage V then yields

dIP (V )

dV
=
I2JZ(V

2
c − V 2)

2(V 2
c + V 2)

(C.1)

Here IJ is the Josephson critical current, Vc = 2eZkBT/ℏ is the Josephson crit-

ical voltage, and Z is the high-frequency impedance in series with the voltage

source. The critical current and voltage can be extracted from I(V ) measure-

ments performed simultaneously with differential conductance mapping and is

shown as inset in Fig. C.1. Attempting to fit this quantity to the measured

zero-energy peak yields poor fitting values R2 = 0.57 and moreover, produces a

characteristic feature of the Josephson peak, negative differential conductance

at the Josephson critical voltage. This negative differential conductance is the

result of the downturn in the slope of the phase-diffusive Josephson current

which occurs after the maximum supercurrent IP is realized at Vc. The ab-

sence of this downturn around the measured zero-energy peak is therefore a

strong indication that the tunnelling effect producing this peak is unrelated to

the Josephson effect.
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Figure C.1: a. Zero-energy differential conductance versus junction resistance
for the Andreev zero-energy peak discovered in Ref. [109] and for the Josephson
zero-energy peak measured in Ref. [28]. Josephson conductance grows as
g(0) ∝ 1/R2

N while the Andreev conductance increases quasi-linearly until it
begins to split due to proximity of the p-wave superconductor b Fitting the
zero-energy Andreev conductance peak with the expression for the differential
Josephson conductance above yields very poor fitting values (R2 = 0.57) due
to the difference in their characteristic spectral shapes



Appendix D

Phase Fluctuations in the SIP

Model

These data and SIP model raise the issue of fluctuations in the relative phase δϕ

between the Nb and UTe2 order parameters when interacting predominantly by

Andreev coupling. Recall, that if UTe2 is an odd-parity superconductor with

a nodal, non-chiral, time-reversal conserving state ∆k , the minimum energy

SIP relative phase is δϕ = π/2 due to proximity of the s-wave electrode. This

effect will spit the zero-bias Andreev conductance as shown in Fig. 6.9. To

evaluate if thermal fluctuations in δϕ should wipe out the peak splitting effect

for the realistic parameterization of ∆k of UTe2, temperature T , and junction

resistance R, we calculate the TSB density-of-states, N(E), when δϕ = π/2,

and when N(E) is averaged over the whole range 0 < δϕ < π. The result, as

presented in Fig. D.1, demonstrates that realistic phase fluctuations will not

wipe out s-wave tip-induced N(E) splitting, thus preserving the Andreev a(V )

conductance splitting.
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Figure D.1: a. Calculated TSB density of states (DOS) N(E) for phase dif-
ference δϕ between Nb and UTe2 with increasing tunnelling matrix |M | to the
right. For a fixed phase increasing proximity of the s-wave tip to the p-wave
sample splits the TSB and zero-energy peak to finite energy. b. Calculated
DOS for δϕ averaged with equal probability in the range 0 < δϕ < π. Despite
averaging the phase difference between the s-wave and p-wave superconductor
the TSB splitting, and thus, the zero-energy peak splitting, is still observed
with increasing tunnelling matrix |M |. Finite phase fluctuations do not there-
fore alter the conclusion that zero-energy peak splitting is characteristic of a
time-reversal symmetry conserving order parameter in UTe2



Appendix E

Normal vs. Superconducting

Tip QSB QPI Detection

Motivated by the presence of dominant finite density of states at zero-energy as

T → 0 and by the consequent hypothesis that a QSB exists in this material, we

search for its signatures using a non-superconductive tip, at voltages within the

superconducting energy gap, and identify unique features resulting from QSB

scattering interference. The typical NIS tunnelling conductance of the UTe2

superconducting state, measured using a non-superconductive tip, is exempli-

fied in the inset to Fig. E.1a. At the (0-11) surface of superconducting UTe2

crystals almost all states inside the superconducting gap E < |∆k| show resid-

ual, ungapped density of states. To visualize the scattering interference of QSB

quasiparticles, we focus on a 40 nm square FOV (Fig. E.1a) for conventional

differential conductance dI/dV |NIS(r, E) at T = 280 mK and at a junction

resistance of R = 5 MΩ. Although the QPI inside the superconducting gap

shows encouraging evidence of the QSB in UTe2, its weak signal-to-noise ratio

owing to the dominant finite density of states for E < |∆k| implies that con-

ventional dI/dV |NISq measurements are inadequate for precision application

of detecting and quantifying the QPI of the QSB in UTe2.

Thus, we turned to a new technique by using superconductive tips to in-

crease the signal-to-noise ratio of QSB quasiparticle scattering. Theory for

the tunnel junction formed between an s-wave superconductive scan-tip and a

p-wave superconductor with a QSB within the interface, reveals that the high

density of QSB quasiparticles allows efficient creation/annihilation of Cooper

pairs in both superconductors, thus generating intense Andreev differential

conductance a(r, V ) ≡ dI/dV |SIS(r, E) [109]. This is precisely what is ob-
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served when UTe2 is studied by superconductive Nb-tip STM at T = 280 mK,

as evidenced by the large zero-energy conductance peak around a(r, V = 0)

(inset to Fig. E.1d). Visualization of a(r, V = 0) and its Fourier transform

a(q, V = 0) as shown in Fig. E.1, reveals intense conductance modulations and

a distinct QPI pattern. Comparing g(q, V = 0) in Fig. E.1b and a(q, V = 0)

in Fig. E.1d reveals numerous common characteristics thus demonstrating that

use of a(q, V ) imaging yields equivalent QPI patterns as g(q, V ) imaging, but

with greatly enhanced signal-to-noise ratio. This is as expected since spatial

variations in the intensity of a(r, V ) are controlled by the amplitude of QSB

quasiparticle wavefunctions, so that spatial interference patterns of the QSB

quasiparticles will become directly observable in a(r, V ). Thus, spatial varia-

tions in a(r, V ) and their Fourier transforms a(q, V ) now allow efficient, high

signal-to-noise ratio, exploration of QSB quasiparticle scattering interference

phenomena at the surface of UTe2.
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Figure E.1: a. Measured normal tip g(r, V = 0) at T = 280 mK. b. Measured
normal tip g(q, V = 0) at 280 mK. Inset: Normal tip single-electron tunnelling
spectrum g(V ). c. Measured superconducting tip a(r, V ) at 280 mK. d. Mea-
sured superconducting tip a(q, V = 0) at 280 mK. Inset: Superconducting tip
Andreev tunnelling spectrum a(V ) as described in detail in Ref. [109]



Appendix F

QSB QPI Repeated

Measurements

To confirm that the QPI of the QSB is present in several FOVs we show two

additional examples of the Fourier transformed zero-energy Andreev conduc-

tance a(q, 0) from two different FOVs in Fig. F.1. Both new datasets, feature

five of the six scattering wavevectors of the sextet qi, i = 1 − 6 discussed in

Chapter 7 and further confirm the signatures of a B3u QSB at the (0 -1 1) sur-

face of UTe2. Particularly repeated measurement of q1 only at energies within

the superconducting gap and at temperatures T < Tc supports the presence of

a superconducting order parameter of B3u symmetry, as this is the only order

parameter which allows spin-conserved scattering at this wavevector.
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Figure F.1: Two independent measurements of a(q, 0) at T = 0.28K confirms
the repeatability of the sextet of scattering wavevectors for the B3u QSB.
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