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Abstract
Spin liquids, not showing a spontaneous-symmetry-breaking order down to low
temperature, serve as the platform for unconventional spin-correlated phenomena
beyond the Landau paradigm. Numerous varieties of classical and quantum spin
liquids (QSL) motivate the experimental identification of different spin liquid
states. However, the lack of an unambiguous signature makes the identification
attempts often unsuccessful. A new experimental approach is clearly needed, and
an emerging concept is to use spin noise as the fingerprints of spin liquid states.

In this thesis, I perform spin noise spectroscopy on spin liquid compounds
whose specific state has not been established. Chapter 1 presents an introduction
to different classes of spin liquid states and the difficulty in their identification,
motivating a new experimental approach. Chapter 2 explains the principle of spin
noise spectroscopy, together with more conventional AC susceptometry. I also
introduce a spin noise spectrometer that employs a Superconducting QUantum
Interference Device (SQUID). In Chapter 3, I present the SQUID spin noise spec-
trometers that I designed and assembled during my DPhil. They have an extreme
sensitivity approaching 10−14 T/

√
Hz, broad bandwidth of DC to 100 kHz, and a

temperature range of 10 mK to 6000 mK. I utilize them to study QSL candidate
compounds with controversial spin liquid states. Chapter 4 presents the spin
noise study of Ca10Cr7O28, which has been hypothesized to be either a QSL or a
spiral spin liquid (SSL). A powerful spin noise spanning a frequency range from
0.1 Hz to 50 kHz is discovered in Ca10Cr7O28, and its overall correspondence
with the prediction of SSL noise simulation evidences Ca10Cr7O28 as a SSL.
Lastly, Chapter 5 presents the spin noise study of ZnCu3(OH)6Cl2, an iconic
QSL candidate with a spin-1/2 kagome lattice. Spins substituted in the interlayer
are discovered to generate powerful spin noise spanning from 0.1 Hz to 100 Hz
and to undergo a sharp transition at 260 mK. The experimental observations are
consistent with spinon-mediated interactions between the interlayer spins, via the
spectrum of spinons in a quantum spin liquid state within the kagome layer.
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Abstract

Spin liquids, not showing a spontaneous-symmetry-breaking order down to low
temperature, serve as the platform for unconventional spin-correlated phenomena
beyond the Landau paradigm. Numerous varieties of classical and quantum spin
liquids (QSL) motivate the experimental identification of different spin liquid states.
However, the lack of an unambiguous signature makes the identification attempts
often unsuccessful. A new experimental approach is clearly needed, and an emerg-
ing concept is to use spin noise as the fingerprints of spin liquid states.

In this thesis, I perform spin noise spectroscopy on spin liquid compounds
whose specific state has not been established. Chapter 1 presents an introduction
to different classes of spin liquid states and the difficulty in their identification, moti-
vating a new experimental approach. Chapter 2 explains the principle of spin noise
spectroscopy, together with more conventional AC susceptometry. I also introduce
a spin noise spectrometer that employs a Superconducting QUantum Interference
Device (SQUID). In Chapter 3, I present the SQUID spin noise spectrometers
that I designed and assembled during my DPhil. They have an extreme sensitivity
approaching 10−14 T/

√
Hz, broad bandwidth of DC to 100 kHz, and a temperature

range of 10 mK to 6000 mK. I utilize them to study QSL candidate compounds
with controversial spin liquid states. Chapter 4 presents the spin noise study of
Ca10Cr7O28, which has been hypothesized to be either a QSL or a spiral spin liquid
(SSL). A powerful spin noise spanning a frequency range from 0.1 Hz to 50 kHz is
discovered in Ca10Cr7O28, and its overall correspondence with the prediction of SSL
noise simulation evidences Ca10Cr7O28 as a SSL. Lastly, Chapter 5 presents the spin
noise study of ZnCu3(OH)6Cl2, an iconic QSL candidate with a spin-1/2 kagome
lattice. Spins substituted in the interlayer are discovered to generate powerful spin
noise spanning from 0.1 Hz to 100 Hz and to undergo a sharp transition at 260 mK.
The experimental observations are consistent with spinon-mediated interactions
between the interlayer spins, via the spectrum of spinons in a quantum spin liquid
state within the kagome layer.
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1
Fingerprinting Spin Liquids

Correlated spin systems exhibit a variety of phenomena. While spins are fully para-

magnetic at high temperatures to maximize entropy, as the temperature is lowered,

they tend to show correlated behaviors to minimize spin interaction energy. One of

the most prominent examples of such low-temperature phases is a spontaneously-

symmetry-broken phase, such as a ferromagnetic or antiferromagnetic state. These

states have a finite local order parameter and have been given a general and straight-

forward explanation by the Ginzburg-Landau theory. A symmetry-breaking phase

transition has defining signatures, such as a sharp transition peak in thermody-

namic quantities (e.g. specific heat), which is usually identifiable in an experiment.

On the other hand, there are spin systems that do not show a symmetry-

breaking order down to low temperature, even way below the spin interaction

energy scale. A combination of geometric frustration, competing interactions, and

low dimensionality prevent interacting spins from forming a local order parameter.

Such a correlated spin phase without a symmetry-breaking order is altogether called

a spin liquid [1–3].1 In some systems, a symmetry-breaking phase transition is not

detected at all down to the lowest temperatures so far accessed by an experiment.

In other systems, a transition is observed at a finite temperature Tc, but Tc is
1This is the conventional and most broad definition of spin liquid. In recent years, the term

spin liquid is sometimes used in a more restricted manner, for example, to primarily refer to a
quantum spin liquid with long-range quantum entanglement [3, 4].

1



2 1.1. Classical spin liquid

much lower than the Curie-Weiss temperature TCW that represents the scale of

spin interaction energy. A parameter f = |TCW|/Tc [1] is useful to quantify the

extent of frustration, and it can be as large as 1000 in certain compounds [5]. Spin

liquid behavior in the temperature range Tc ≤ T ≤ |TCW| is expected to be distinct

from that of a paramagnet or a symmetry-breaking ordered phase, and should have

characteristics beyond the paradigm of Ginzburg-Landau theory.

Spin liquids indeed turn out to be a platform for diverse exotic phenomena.

One example is a frustrated spin system with extensive ground state degeneracy.

Fluctuations among the degenerate states can give rise to a peculiar behavior,

for example, an algebraic (power-law) spin correlation function that is typically

expected only in the proximity of critical points [6, 7]. Another example is the

formation of topological order or, more generally, quantum order, which is a non-

local order robust to a local perturbation [8]. A quantum order often shows unique

properties originating from emergent gauge fields and fractional quasiparticles.

In the following sections, I will introduce two major classes of spin liquids: a

classical spin liquid and a quantum spin liquid (QSL). I will also present several

non-ordered phases that are typically not called spin liquids, although they deserve

to be in the most broad definition. As will become clear, there are many different

types of spin liquids, and they are by no means fully described by just an absence

of an order. However, due to the lack of an explicit signature, such as a local order

parameter in a spontaneously-symmetry-broken phase, identifying spin liquid types

in a specific system/compound has been difficult. This thesis aims to present some

new steps toward the long-term goal of achieving spin liquid identification.

1.1 Classical spin liquid

A classical spin liquid is a type of spin liquid that has extensively/sub-extensively

degenerate classical ground states. The massive degeneracy leads to unique prop-

erties such as zero-point entropy and (sometimes) algebraic spin correlations. A

comprehensive classification scheme of a classical spin liquid has not been estab-

lished and is recently being worked out [7,9,10]. Here, I provide two examples that
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Figure 1.1: (A) Ising spins coupled antiferromagnetically on a triangle. The antiferro-
magnetic bonds cannot be simultaneously satisfied, so the spins are geometrically frus-
trated. The ground states are six-fold degenerate two-up-one-down or one-up-two-down
configurations. (B) Frustrated Ising spins coupled antiferromagnetically on a kagome
lattice comprising corner-shared triangles. (C) Ising spins coupled ferromagnetically on
a tetrahedron. The easy axis of each Ising spin is toward the tetrahedron center. The
ferromagnetic bonds cannot be simultaneously satisfied, so there is frustration. The
ground states are six-fold degenerate two-in-two-out configurations. (D) Frustrated
Ising spins coupled ferromagnetically on a pyrochlore lattice comprising corner-shared
tetrahedra, realizing the so-called spin ice state.

illustrate the concept of classical spin liquids: geometrically frustrated spin liquids

with extensive degeneracy and a spiral spin liquid with sub-extensive degeneracy.

1.1.1 Geometrically frustrated classical spin liquid

Geometrical frustration is a typical source of extensive degeneracy [1,6]. Consider

a case where three Ising spins at the vertices of a triangle interact antiferro-

magnetically. Two-up-one-down or one-up-two-down configurations minimize the

energy. Thus, six out of possible 23 = 8 states are degenerate ground states as

shown in Fig. 1.1A. When the spins are on a kagome lattice comprised of corner-

shared triangles as shown in Fig. 1.1B, the number of degenerate ground states

increases exponentially to the number of triangles. This system thus has extensive

degeneracy of ground states leading to zero-point entropy.



4 1.1. Classical spin liquid

Four Ising spins at the vertices of a tetrahedron can also get geometrically

frustrated. As shown in Fig. 1.1C, when the spin easy-axis is toward the center of

the tetrahedron and interactions are ferromagnetic, two-in-two-out configurations

minimize the energy. Thus, six out of possible 24 = 16 states are degenerate. The

ferromagnetic Ising model on a pyrochlore lattice comprises corner-shared tetrahe-

dra of the two-in-two-out configurations as shown in Fig. 1.1D. This model is called

spin ice in analogy to the two-covalent-bond-two-hydrogen-bond configuration of

water ice. Spin ice shows various unique properties. It has extensive ground state

degeneracy and exhibits characteristic power-law decaying spatial correlations [6].

The coarse-grained spin field P (r) satisfies the constraint ∇ · P (r) = 0, which

naturally introduces an emergent gauge field A(r) as P (r) = ∇ × A(r). One spin-

flip excitation fractionalizes into two magnetic monopole quasiparticles [6, 11, 12].

The signature of such magnetic monopoles has been observed in the paradigmatic

spin ice compounds Dy2Ti2O7 [13–15] and Ho2Ti2O7 [16].

1.1.2 Spiral spin liquid

A spiral spin liquid [17,18] is a class of classical spin liquid distinct from the geomet-

rically frustrated case. Each degenerate ground state is a spiral spin configuration

with a certain wavevector Q. The degenerate-ground-state wavevectors form a

continuous ‘spiral contour’ such as a ring in reciprocal space as shown in Fig. 1.2A.

Such a spiral contour is experimentally observed in for example the 2D honeycomb

lattice of FeCl3 [19] and the 3D diamond lattices of MnSc2S4 [20] and LiYbO2 [21].

Spin fluctuations persist down to low temperature via the Q-direction fluctuations.

The degeneracy is sub-extensive, and the ground states are non-locally con-

nected by a global rotation of the spiral direction. This is distinct from a geo-

metrically frustrated case, where the degeneracy is extensive and the system hops

among different ground states by flipping several local spins. A peculiar type of

local vortex is predicted to appear in a spiral spin liquid [22]. A ‘momentum

field’ (∼ spiral wavevector field) can be defined as the gradient of spins in a coarse-

grained lattice, and there exists a topological defect of the momentum field dubbed
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Figure 1.2: (A) Left: Schematic of a spin spiral in different directions. In a spiral
spin liquid, the wavevector Q of a ground-state spin spiral (black arrow) can point at
any in-plane angle Θ. The spin configuration shown here corresponds to a topological
defect called a momentum vortex — the change of wavevector angle Θ on any trajectory
surrounding the center accumulates to

∫
∇Θ · dl = 2π. Right: Spiral contours formed

by the degenerate-ground-state wavevector Q of spiral spin liquid Hamiltonians (Eq. 4.3
for the different parameter values of J2/J1). (B) Schematic of spin configurations in the
three simple cases of a spiral spin liquid. Left: a spin spiral without topological defects.
Centre: a simple momentum vortex. Right: a simple momentum anti-vortex. Figures
reproduced from Ref. [23] with a minor modification.

as a ‘momentum vortex,’ as illustrated in Fig. 1.2B. The momentum vortex is

different from a spin vortex, and is predicted to govern the low-energy dynamics

of a spiral spin liquid [22].
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1.2 Quantum spin liquid

A quantum spin liquid (QSL) [3, 4, 8, 24, 25] is a state with long-range quantum

entanglement, which cannot be disentangled into a product state by local transfor-

mations. Different patterns of long-range entanglement give rise to different types

of QSL. A key signature shared by many QSL models is fractionalized quasiparticle

excitations, which usually appear as a consequence of exotic long-range quantum

entanglement. Detection of fractionalized quasiparticles is typically regarded as an

experimental smoking gun of a QSL,2 as a direct experimental probe of long-range

entanglement has yet to be established.

A QSL is primarily categorized by whether or not the excitation spectrum

is gapped. A gapped QSL is unambiguously characterized by a topological the-

ory and is shown to have well-defined emergent quasiparticles. A gapless QSL

is theoretically more complex but is also predicted to host rich physics, often

admitting a quasiparticle description and exhibiting power-law correlations. As

the theoretical framework to describe a general QSL, the low-energy effective

theory involving emergent gauge fields has been found useful. When formulating

particle fractionalization that is normally an unphysical process, a gauge field has

to naturally emerge to keep the state physical. Deconfinement of emergent gauge

fields leads to successful particle fractionalization, and the gauge structure com-

bined with the symmetry operation can classify different types of QSL (projective

symmetry group [8])

There are a few QSL states whose existence is established by an exactly solvable

model, such as the Z2 gapped QSL in the toric code model [24, 26] and the Z2

gapless/gapped QSL in the Kitaev model [24, 27]. The existence of other types of

QSL, such as a U(1)/Z2 Dirac/Fermi surface spinon QSL, is proposed mostly from

the mean-field solutions of a Heisenberg Hamiltonian in the parton construction,

as discussed below. From a different perspective, a QSL state is presumed to
2There is a caveat that quantum entanglement is not the only route that gives rise to

fractionalization. One example is the magnetic monopole quasiparticle excitations in a classical
spin ice.
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exist in a model satisfying the following conditions and not showing a symmetry-

breaking order [24]: a local SU(2)-invariant spin Hamiltonian on a translationally

invariant lattice, a total half-integer spin per unit cell, and periodic boundary

conditions. In such a model, the Lieb-Schultz-Mattis (LSM) theorem [28] generally

proves that there is either a ground state degeneracy or a bulk gapless excitation.

Aside from symmetry-breaking order, topological order and non-trivial long-range

entanglement are the prime known mechanisms that can protect the ground state

degeneracy and the gapless excitation, respectively [24].

To illustrate the notions of a QSL explained so far, here I concisely introduce the

parton construction of a Heisenberg Hamiltonian, which predicts QSLs of different

gauge structures harboring spinon excitations.

1.2.1 Spinon quantum spin liquids from parton construc-
tion

Concept of parton construction

Using the parton construction [8,24,25], one can attempt to find a QSL state even

when the model is not exactly solvable. The basic idea is to forcedly fractionalize

spins by representing them as canonical bosons or fermions. For example, one can

introduce Abrikosov fermions to represent spin-1/2 operators.

Ŝi = 1
2
f̂ †

iασαβ f̂iβ, (1.1)

where f̂ †
iαf̂iα = 1, (1.2)

ϵαβ f̂iαf̂iβ = 0. (1.3)

The Einstein summation convention is used. α, β =↑, ↓ are spin indices, σαβ

represents the Pauli matrices, and ϵαβ is the antisymmetric tensor. From now

on, I call the fractionalized particle created by f̂ †
iα a (fermionic) spinon. The spin

operator expressed by the spinon operators has a local SU(2) gauge structure,

which becomes clear by defining a matrix

Ψi =
(
f̂i↑ f̂ †

i↓
f̂i↓ −f̂ †

i↑

)
(1.4)
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and rewriting the spin operator as

Ŝi = 1
4

Tr(Ψ†
iσΨi), (1.5)

where Tr(ΨiσΨ†
i ) = 0. (1.6)

The equations are invariant under the following SU(2) transformation

Ψi → Ψ′
i = ΨiWi, Wi ∈ SU(2). (1.7)

The fermionic spinon representation of spins in Eq. 1.1 introduces redundant

degrees of freedom and expands the Hilbert space. To remove the unphysical

redundancy in the Hilbert space, namely the zero-spinon-occupancy and double-

spinon-occupancy states, an infinite number of local constraints (Eqs. 1.2 and 1.3)

exist. As the local constraints confine the fractionalized spinons back into the

original spin state, the forced fractionalization usually does not lead to anything

new. However, in a special case with long-range quantum entanglement (i.e. a

QSL state), the fractionalized spinons may stay deconfined and get their own

life despite the local constraints. This approach to obtaining a QSL state with

fractionalized particles is called the parton construction. The parton construction

has been demonstrated to be valid in the exactly solvable Kitaev honeycomb model,

where the fractionalized Majorana particles get their own life in a Z2 QSL. Here, I

discuss the parton construction of a Heisenberg model leading to QSLs of different

gauge structures.

Mean-field solutions of Heisenberg model in parton construction

The Hamiltonian of an S = 1/2 antiferromagnetic Heisenberg model is rewritten

by the fermionic spinon as follows.

Ĥ0 = J
∑
⟨ij⟩

Ŝi · Ŝj = J
∑
⟨ij⟩

1
4
f̂ †

iασαβ f̂iβ · f̂ †
jγσγδf̂jδ (1.8)

= J
∑
⟨ij⟩

1
2
f̂ †

iαf̂iβ f̂
†
jβ f̂jα − J

∑
⟨ij⟩

1
4
f̂ †

iαf̂iαf̂
†
jβ f̂jβ. (1.9)

The infinite number of local constraints (Eqs. 1.2 and 1.3) make it difficult to solve

the problem. One way is to solve the Hamiltonian forgetting the local constraints,
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and then later perform the Gutzwiller projection |Ψ⟩ → PG |Ψ⟩ that maps the

solution to a physical state [24, 25]. Another way is to account for the local

constraints by adding gauge field operators3 as

Ĥ = Ĥ0 +
∑

i

[
â3

i (f̂
†
iαf̂iα − 1) + â1

i (f̂iαf̂iβϵαβ + h.c.) + â2
i i(f̂iαf̂iβϵαβ − h.c.)

]
(1.10)

= Ĥ0 +
∑

i

[
â3

i (f̂
†
iαf̂iα − 1) +

(
(â1

i + iâ2
i )f̂iαf̂iβϵαβ + h.c.

)]
. (1.11)

The gauge field operators can be regarded as Lagrange multipliers that will impose

the local constraints Eqs. 1.2 and 1.3.4

A mean-field approximation can be used to solve the Hamiltonian Ĥ. Assuming

that the following equal-time expectation values acquire finite values,

〈
f̂iαf̂jβ

〉
= −1

2
ηijϵαβ, (1.13)〈

f̂ †
iαf̂jβ

〉
= 1

2
χijδαβ, (1.14)〈

âl
i

〉
= al

i, (1.15)

the general form of the mean-field Hamiltonian is obtained as

HMF = −
∑
ij

3
8
J
[(
χjif̂

†
iαf̂jα + ηij f̂

†
iαf̂

†
jβϵαβ + h.c.

)
− |χij|2 − |ηij|2

]
(1.16)

+
∑

i

[
a3

i (f̂
†
iαf̂iα − 1) +

(
(a1

i + ia2
i )f̂iαf̂iβϵαβ + h.c.

)]
. (1.17)

Note that changing the gauge field operators into the c-numbers (Eq. 1.15) has

loosened the local constraints to the equilibrium version f̂ †
iαf̂iα = 1 → ⟨f̂ †

iαf̂iα⟩ = 1.
3The operators âi are called ‘gauge’ fields due to the following logic. The original Hamiltonian

(Eq. 1.9) is invariant under the SU(2) transformation of the spinon operators (Eq. 1.7), and it is
natural to impose the same gauge invariance to the Hamiltonian including the local constraints
(Eq. 1.11). To ensure the gauge invariance, the ‘gauge’ fields âi transform together with the
spinon operators (corresponding to the ‘matter’ fields), as later described in Eq. 1.20.

4The role of the gauge fields becomes clearer in the path integral formulation. Using coherent
states satisfying f̂iα |fiα⟩ = fiα |fiα⟩ and âi |ai⟩ = ai |ai⟩, the partition function is expressed as

Z =
∫

D[f, f̄ ; a] exp

[
−
∫ β

0
dτ

(∑
iα

f̄iα∂τ fiα − H(f, f̄ ; ia)

)]
.

(1.12)

Here, the operators are changed to the c-numbers as fiα(τ) = ⟨fiα,n| f̂iα |fiα,n⟩, f̄iα(τ) =
⟨fiα,n| f̂†

iα |fiα,n⟩, and ai(τ) = ⟨ai,n| âi |ai,n⟩, where τ = n∆t (∆t → 0). When the gauge fields
a1

i (t), a2
i (t), and a3

i (t) are integrated out, they give rise to delta functions that revive the local
constraints Eqs. 1.2 and 1.3.
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The obtained mean-field solution needs to undergo the Gutzwiller projection to be

a physical state for certain. Also note that the mean-field solution is not necessarily

reliable, even qualitatively, as the (gauge5) fluctuations of χij, ηij, and al
i around the

mean-field value could drastically alter the solution. Accounting for the fluctuations

of al
i is equivalent to reviving the original local constraints. Accounting for the

fluctuations of χij and ηij is equivalent to reviving the original Hamiltonian. The

mean-field solution is guaranteed to be reliable only when these fluctuations are

weak, namely when the fluctuation modes are fully gapped.

The mean-field Hamiltonian should retain the SU(2) gauge structure originating

from that of the fermionic representation (Eq. 1.7). By defining the matrices

ψi =
(
f̂i↑

f̂ †
i↓

)
,

Uij =
(
χ∗

ij ηij

η∗
ij −χij

)
,

(1.18)

the mean-field Hamiltonian can be rewritten as

HMF = −
∑
ij

3
8
J
[
(ψ†

iUijψj + h.c.) − 1
2

Tr(U †
ijUij)

]
+
∑

i

ai · (ψ†
i σψi). (1.19)

Note that the gauge fields have been redefined as −2a1,2
i → a1,2

i here. This Hamil-

tonian is invariant under the following SU(2) transformation with Wi ∈ SU(2):

ψi → ψ′
i = Wiψi, Uij → U ′

ij = WiUijW
†
j ,

ai · σ → a′
i · σ = Wi(ai · σ)W †

i .
(1.20)

The transformation of ψi in Eq. 1.20 is equivalent to that of Ψi in Eq. 1.7.

The mean-field ansatz (Uij,ai) is classified by the so-called invariant gauge

group (IGG). The IGG is the group of gauge transformations that do not alter

the mean-field ansatz expression {Wi|Uij = WiUijW
†
j ,ai · σ = Wi(ai · σ)W †

i }.

The possible IGG in the fermionic SU(2) formalism here is SU(2), U(1), and Z2;

and the corresponding spin liquids are called the SU(2), U(1), and Z2 spin liquids,

respectively. The IGG is important as it indicates the allowed gapless fluctuation

around the mean-field ansatz [8]. When one writes Uij = U ije
iaij ·σ, the phase

5χij and ηij are also called ‘gauge’ fields. To ensure the SU(2) gauge invariance of the mean-
field Hamiltonian (Eq. 1.17), the ‘gauge’ fields χij , ηij , ai transform together with the ‘matter’
fields f̂iα (Eq. 1.20).
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fluctuation represented by aij is gapless in any direction for an SU(2) spin liquid,

gapless in one certain direction for a U(1) spin liquid, and fully gapped for a Z2

spin liquid. The mean-field solution is guaranteed to be reliable only for a Z2 spin

liquid where the fluctuations are gapped.

Now, let us examine the properties of different mean-field ansatz in a square

lattice example. The zero-flux state ansatz is given by

χij =
{
χ nearest-neighbor bonds
0 others ,

ηij = 0, al
0 = 0, (1.21)

where χ is real. The χij configuration is illustrated in Fig. 1.3A. This ansatz gives

Uij = χσ3 and the IGG is SU(2). The mean-field spinon dispersion

E = ±3
4
Jχ (cos kx + cos ky) (−π < kx < π,−π < ky < π) (1.22)

is quadratic to form a large Fermi surface, as shown in Fig. 1.3A. Thus, the zero-

flux state is an SU(2) spinon Fermi surface QSL.

Another example is the π-flux state

χi,i+µ =
{
iχ, µ = x

iχ(−1)ix µ = y , ηij = 0, al
0 = 0. (1.23)

This ansatz doubles the unit cell to the x-direction. Ui,i+x = −iχI and Ui,i+y =

−iχI(−1)ix and the IGG is again SU(2). The mean-field spinon dispersion

E = ±3
4
J |χ|

√
sin2 kx + sin2 ky

(
−π

2
< kx <

π

2 ,
− π < ky < π

)
(1.24)

is linear with Dirac points at k = (0, 0), (0, π) as shown in Fig. 1.3B. Thus, the

π-flux state is an SU(2) spinon Dirac QSL.

The staggered-flux state ansatz [8] is described by

χi,i+µ =
{
iχ0 + (−1)ix+iyχ1 µ = x
iχ0 − (−1)ix+iyχ1 µ = y ,

ηij = 0, al
0 = 0. (1.25)

The IGG is U(1) and the spinon dispersion is linear with Dirac points. The

staggered-flux state is a U(1) spinon Dirac QSL.
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−π 0 πkx −π
0 π
ky

−J|χ|

0

J|χ|
E

−π/2 0 π/2kx −π
0

π
ky

−J|χ|

0

J|χ|

E

π-flux state ansatz

Zero-flux state ansatz

χij

χij

A

B

Figure 1.3: (A) Left: Mean-field ansatz χij of the zero-flux state corresponding to
Eq. 1.21. χij = +χ at each link. Right: Corresponding spinon dispersion which is
quadratic with a large Fermi surface. (B) Left: The π-flux state ansatz corresponding to
Eq. 1.23. The arrow direction corresponds to χij = +iχ. Right: Corresponding spinon
dispersion which is linear with Dirac points.

Finally, the following ansatz is one of the ansatz of a Z2 spinon gapped QSL [8].

χi,i+x = χi,i+y = −χ, ηi,i+x = ηi,i+y = 0, (1.26)

χi,i±x+y = χi,i∓x−y = 0, ηi,i±x+y = ηi,i∓x−y = η0 ∓ iη1, (1.27)

a1
0 ̸= 0, a2

0 = a3
0 = 0. (1.28)

This way, spinon QSLs of different gauge structures are derived as a mean-field

solution in the parton construction. Note that the gapless gauge field fluctuations,

allowed in the SU(2) and U(1) case, mediate spinon-spinon interactions that could

completely alter the properties of the solution. Among the examples above, only

the Z2 spinon QSL is guaranteed to have gapped gauge-field fluctuations so that

the mean-field solution is qualitatively reliable.
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1.3 Non-spin-liquid where ordering is absent

I list examples of phases that are not called spin liquids despite the absence of order-

ing.

1.3.1 Valence bond solid

When pairs of two quantum spin-1/2 form dimers, the ground state will be a

valence bond solid, a tensor product of local singlet states. While a valence bond

solid typically breaks lattice symmetry, there are some exceptions. One example is

the lattice with an even number of spins in a unit cell, as shown in Fig. 1.4A. The

dimer formation within the unit cell will not break the lattice symmetry. Another

example is the certain higher-spin chains [29], where the valence bond solid state

appears as an exact solution that retains the lattice symmetry. The valence bond

state is usually not called a spin liquid, even in these cases where any symmetry

breaking does not occur. Its ground state is gapped and non-degenerate, without

massive degeneracy or long-range quantum entanglement.

1.3.2 Random singlet

A random singlet state (also called a valence bond glass state) comprises singlets

with random coupling strengths. When quantum Heisenberg spins are coupled by

antiferromagnetic interactions of randomly distributed coupling strength, a pair of

spins coupled by the strongest antiferromagnetic interaction first forms a singlet

and becomes magnetically inert. The singlet formation continues through the

second, third, and subsequent strongest couplings until all the spins form singlets.

The resulting state is an ensemble of singlets with distributed binding energy, as

schematically shown in Fig. 1.4B. The renormalization group analysis [30,31] shows

that the density of states (i.e. the distribution of the singlet binding energy) at low

energy should have a power-law form ρ(ε) ∼ ε−γ. A random singlet state with

spinful defects is predicted to occur in a weakly-disordered valence bond solid

state [32, 33], and its relevance to QSL candidate compounds has been recently
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Valence bond solid state

Random singlet state

Spin glass state

Polarized state
H

A

B

C

D

Figure 1.4: Schematic drawings of a valence bond solid state in a 1D chain with two
spins per unit cell (A), a random singlet state on a 2D kagome lattice (B), a spin glass
state (C), and a polarized state under an overwhelming external field (D). The blue
ellipses represent singlets formed by two spin-1/2.

proposed [32, 34]. While a random singlet state is a quantum disordered state, it

is typically distinguished from a QSL state.

1.3.3 Spin glass

A spin glass [35, 36] is a disordered magnetic state where spins are frozen in a

random configuration, as shown in Fig. 1.4C. A canonical spin glass is a doped

alloy such as AuFe or CuMn, where magnetic impurities of a small concentra-

tion are randomly distributed in metal. The Ruderman–Kittel–Kasuya–Yosida

(RKKY) interaction mediated by the itinerant electrons induces random exchange

interactions among the impurity spins. The relatively recent review [36] lists the

four common signatures in such a canonical spin glass: (i) a cusp in magnetic

susceptibility that shows a tiny shift with frequency ω, (ii) a hysteresis in DC-

magnetization, (iii) an absence of a sharp specific heat divergence, (iv) aging of

magnetization signifying the metastability.

While the understanding of the canonical spin glass has been significantly de-

veloped, a glassy behavior of spins has also been observed in various other systems.

When the magnetic impurity concentration is increased, clusters of impurity spins

are formed to slow down the spin dynamics (a cluster glass). Even presumably clean
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systems, such as the spin ice compound Dy2Ti2O7 [37–39] and a quasi-2D spin-3/2

triangular system with little doping SrCr9pGa12-9pO19 [40,41], are found to exhibit

glassy behavior. Due to the extant phenomena, the framework to explain the

general glassy phenomena of spins has yet to be established. A spin glass is unique

in the sense that it is a non-equilibrium state, and is usually distinguished from

both the typical spontaneous-symmetry-broken phases and spin liquids. Note that

an order parameter can be defined in a spin glass [42]; however, it is distinct from

a typical local order parameter, and signatures of a symmetry-breaking transition

such as a specific heat peak are absent in a spin glass.

1.3.4 Polarized state due to external field

When the Zeeman energy due to an external field exceeds the spin-spin interaction

energy, the spins become polarized to the direction of the field as shown in Fig. 1.4D.

This polarized state is non-degenerate and continuously connects to the high-

temperature paramagnetic phase as the temperature exceeds the Zeeman energy.

While the external field explicitly breaks time-reversal symmetry, no spontaneous

symmetry breaking occurs down to zero temperature. Despite this absence of order,

such a polarized state is usually considered trivial and is not called a spin liquid.

1.4 Fingerprinting spin liquids with spin noise
spectroscopy

There are many types of spin liquid states and other non-ordered states. There is a

clear motivation to identify and classify them. A spontaneously-symmetry-broken

phase with a conventional magnetic order can be identified by various signatures,

such as a clear phase-transition peak in specific heat or magnetic Bragg peaks in

x-ray/neutron scattering experiments. On the other hand, spin liquids often lack

an unambiguous signature, and one has to rely on a careful comparison between the

experiment and the theory. Thermodynamic quantities are useful in distinguishing
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Phase Specific Heat Magnetic susceptibility
kBT ≪ J J ≪ kBT kBT ≪ J J ≪ kBT

2D Ising AF kagome e−J/kBT T−2 T−1 (T + J)−1

2D spiral spin liquid c0 + c1T T−2 drop (T + J)−1

1D S = 1/2 Heisenberg AF T T−2 χ0 + 1/ ln(J/kBT ) (T + J)−1

1D valence bond solid e−J/kBT T−2 e−J/kBT (T + J)−1

Conventional spin glass T T−1 drop (hysteresis) (T + J)−1

Table 1.1: Specific heat and magnetic susceptibility of several non-ordered magnetic
phases. J is interaction energy scale and T is temperature. Specific heat (kBT ≪ J) of
2D spiral spin liquid is taken from the analytical prediction in Ref. [18]. Susceptibility
(kBT ≪ J) of 2D spiral spin liquid is taken from experimental studies [19, 43], as I am
not aware of a clear theoretical prediction. 1D S = 1/2 Heisenberg AF chain results are
predictions from an exact solution [44]. Conventional spin glass results are empirical [36].

Phase Spin excitation spectrum
2D Ising AF kagome Continuum
2D spiral spin liquid Ring-like continuum

1D S = 1/2 Heisenberg AF Spinon continuum
1D valence bond solid Triplet bands

Conventional spin glass Continuum

Table 1.2: Spin excitation spectrum of several non-ordered magnetic phases.

non-ordered magnetic phases. A classical spin liquid can be evidenced by a zero-

point entropy (derived from specific heat measurements), indicating massive degen-

eracy. A conventional spin glass is characterized by a magnetic susceptibility cusp,

absence of a peak in specific heat, and hysteresis/aging in magnetization. Further,

the temperature dependence of specific heat and magnetic susceptibility, shown in

Table 1.1 for several non-ordered magnetic phases, can narrow down possible mag-

netic phases. However, the temperature dependence of thermodynamic quantities

is usually not decisive. Different models show similar temperature dependence, and

complexity in actual compounds (e.g. extra interactions and disorder) often makes

the temperature dependence hard to extract.

Probing spin excitation spectra by scattering experiments, listed in Table 1.2,

also serves as a strong identifier of magnetic phases. For example, observation

of triplet bands can signify a 1D valence bond solid. A ring-like structure factor

is the defining feature of a 2D spiral spin liquid, and fractional excitations such

as spinon are the smoking gun of a quantum spin liquid state. However, when
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a broad continuum is the defining feature of a magnetic phase, it is often chal-

lenging to experimentally identify a continuum type. Successful examples are 1D

S = 1/2 Heisenberg antiferromagnetic spin chain compounds, such as KCuF3 and

CuSO4·5(D2O). The characteristic excitation continuum observed by the scattering

experiments [45, 46] is regarded as an experimental signature of spinons, although

it is unclear from the experimental data alone whether the continuum excitation

evidences spinon excitations. It is the precise comparison to the exact analytical

prediction of the excitation continuum that substantiates the spinon identification.

In most of the frustrated spin systems, theoretical models are not exactly

solvable. The prime example is the ground state phase of the spin-1/2 antifer-

romagnetic Heisenberg model on a 2D kagome lattice. As discussed in Section 1.2,

the LSM theorem implies that the ground state of this highly frustrated model

is likely to be a QSL, unless it shows a symmetry-breaking order. However, the

exact ground state is still under debate. Various numerical methods, such as the

exact diagonalization and the density matrix renormalization group, have been

employed to predict the ground state and its energy spectrum. They pointed to

various states with comparable energy, such as U(1)/Z2 Fermi surface/Dirac QSLs,

gapped QSLs, and a valence bond solid [47,48]. Even if the ideal theoretical model

were solvable, the experimental identification of a state in a real compound would

suffer a further complication. Subdominant interactions and quenched disorder

that almost always exist in the real compound could significantly affect the ground

states, especially in a frustrated system where the energy of qualitatively different

states is close. ZnCu3(OH)6Cl2 [47,48], which has been regarded as one of the best

realizations of the kagome Heisenberg model, is no exception. The weak anisotropic

interactions and the substitution between nonmagnetic Zn2+ and spin-1/2 Cu2+

could drive the realistic situation away from the presumed kagome Heisenberg

model. Consequently, experimental studies have drawn many different conclusions

about ZnCu3(OH)6Cl2.



18 1.4. Fingerprinting spin liquids with spin noise spectroscopy

Spin Noise Spectroscopy

There is a clear need for a new experimental technique to identify spin liquid states.

The emerging new concept is to use spin noise as a fingerprint of a spin liquid

compound. Ref. [49] theoretically proposes that spin correlations in space and time,

revealed by spin noise measurements, are capable of probing different phases of cold

fermionic gases: Bose-Einstein condensation, Cooper pairing, antiferromagnetic

order, and the algebraic spin liquid. More recently, spin noise spectroscopy on a

magnetic insulator is suggested to be capable of diagnosing different QSL states

such as Z2 Dirac, Z2 Fermi surface, and U(1) Fermi surface QSL; and random

singlet states caused by disorder [50–53].

Theoretical proposals to detect spin noise have been made for different experi-

mental techniques such as Superconducting QUantum Interference Device (SQUID)

spin noise spectroscopy [54–56], laser spin noise spectroscopy [49], and Nitrogen-

Vacancy (NV) center [50–53, 56–58]. To my knowledge, laser spin noise spec-

troscopy has been primarily applied in semiconductors and atomic gases where the

Faraday effect is strong [59, 60]. The current NV center measurement sensitivity

pT/
√

Hz [61] is not sufficient to capture most spin noise signals in a reasonable

experimental time. This thesis work employs the SQUID spin noise spectroscopy,

which makes use of the most sensitive magnetic flux sensor approaching fT/
√

Hz

sensitivity and below.

The SQUID spin noise spectroscopy has recently proven its use in the study of

magnetic monopole dynamics in the classical spin ice Dy2Ti2O7 [15, 62, 63]. The

observation of an anomalous exponent in magnetic noise led to the discovery of

emergent fractal dynamics of monopoles. This thesis introduces such SQUID spin

noise spectroscopy to general spin liquid studies. The goal is to fingerprint spin

liquid compounds whose exact spin liquid state is unknown beforehand, with a

particular focus on the QSL candidate compounds. When I embarked on this

journey, to my knowledge, spin noise in QSL candidates had never been experi-

mentally detected. Thus, the first goal was to demonstrate the viability of the

spin noise measurement. It led me first to measure a 2D bilayer kagome QSL
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candidate Ca10Cr7O28, which I expected to generate a strong spin noise signal.

After my successful experimental discovery of the spin noise signal in Ca10Cr7O28,

I moved on to measure spin noise in one of the most prominent QSL candidates:

ZnCu3(OH)6Cl2.
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2
Spin Noise Spectroscopy

Spin dynamics originate from various interactions in a spin system. Experimental

studies of spin dynamics can provide a lot of insights into the ground state of a

spin system and its spin excitations, making them a powerful tool for studying spin

liquids. In this chapter, I introduce spin noise spectroscopy, a novel experimental

approach to studying the dynamics of spin liquids. First, I will introduce the basic

principles of spin dynamics from the AC susceptibility perspective. I will then

explain the concept of spin noise and its relation to AC susceptibility. Afterward, I

will present the Superconducting QUantum Interference Device (SQUID), the most

sensitive detector of magnetic flux in existence, which plays a critical role in our

spin noise spectrometer. Finally, I will compare different experimental techniques

to study spin dynamics based on their scientific and technical merits.

2.1 Spin dynamics and AC susceptibility

2.1.1 Precessional and relaxational spin dynamics

Spin dynamics can be largely separated into three channels: the precessional

dynamics driven by the spin Hamiltonian, the relaxational dynamics due to various

couplings to the environment, and the random thermal and quantum fluctuations.

21
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These concepts are illustrated by a simple local electron spin-1/2 under a constant

magnetic field H = (0, 0, Hz).

Firstly, the spin s precesses around the magnetic field with an angular frequency

ωE = 2µ0µBHz/ℏ, as semiclassically described by

ds

dt
= −µ0

2µB

ℏ
s × H . (2.1)

This type of spin evolution due to the field is called the precessional dynamics. In

a quantum mechanical picture, the precession can be understood as an x-direction

spin state (|+⟩ + |−⟩)/
√

2 precessing at an angular frequency ωE = 2µ0µBHz/ℏ,

which corresponds to the spin excitation energy from the ground state |−⟩ to the

excited state |+⟩. Thus, a precession process generally has a corresponding spin

excitation process. As the field H can be either from an external coil or an exchange

field from neighboring spins, spin excitations in a general spin Hamiltonian give

rise to the precessional dynamics. The precession is an energy-conservation process

and also conserves the spin component parallel to the field, in this example the

z-direction spin.

Secondly, due to an environmental coupling, the spin gradually approaches the

minimum-energy state along the field H . Such spin evolution involving an energy

change is called relaxational dynamics. Many different mechanisms trigger relax-

ation, such as a scattering with thermal phonons, a coupling to environmental spins

not considered in the Hamiltonian, and so on. Note that neither the precessional

nor relaxational dynamics occur in the strict quantum mechanical ground state,

where the spin is typically parallel to the field. Thermal fluctuation (or external

field perturbation) is a necessary drive that excites the spin state and triggers the

precessional or relaxational dynamics.

Finally, there are random thermal and quantum fluctuations. The thermal

fluctuation arises from a stochastic interaction process with a thermal bath. Here,

the thermal fluctuation specifically refers to the random spin evolution that aver-

ages out to zero, and is distinguished from the relaxational process that also has

underlying stochastic nature but evolves spin on average. The quantum fluctuation
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is due to the non-commutativity of spin operators in different directions. The

quantum fluctuation is a purely quantum-mechanical effect and continues even

down to the theoretical zero temperature.

A single spin has been assumed so far, but a similar discussion applies to a

total spin S = ∑
i si of a spin ensemble. One difference for the total spin is that

the magnitude |S| is allowed to vary. Also note that the precessional dynamics

purely due to intra-system spin-spin interactions conserve the total spin S. Such

precessional spin dynamics will not manifest in a strictly equal-weight sum of all

the spins under consideration S = ∑
i si, but they are still detectable in realistic

experimental measurements. It is because experiments typically measure a partial

or weighted sum of spins S = ∑
i wis

i, where the weight wi depends on specific

conditions such as a distance to the experimental probe.

Spin dynamics in a system provide rich information about the underlying spin

state. The precessional dynamics are controlled by either an external field or spin-

spin interactions in the Hamiltonian, reflecting the spin excitations in the system.

The frequency spans from the largest interaction in the spin Hamiltonian down

to zero frequency in case the excitation spectrum is gapless. The relaxational

dynamics occur via couplings to the environment and are theoretically more com-

plex; however, their frequency and temperature dependence reflect the properties

of the underlying spin state. For example, a characteristic ∼Hz slow relaxation,

often with a broad frequency distribution, emerges when the spins turn into a

superparamagnet state or a spin glass state upon cooling [64]. In a classical spin

ice Dy2Ti2O7, an almost temperature-independent ∼kHz relaxation is observed

between 10 K and 3 K, due to thermal-energy-assisted quantum tunneling of Ising

spins [65]. At even lower temperatures below ∼2 K, the relaxational frequency

drops to ∼Hz much more rapidly than the Arrhenius law, due to the underlying

dynamical fractal structure that has been recently elucidated [63].
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2.1.2 Definition of AC susceptibility

AC susceptibility [64] is a conventionally established measurement to characterize

spin dynamics. Consider a magnetic system subject to an externally applied mag-

netic field oscillation, as schematically shown in Fig. 2.1A. When the applied field is

a sinusoidal wave with a fixed frequency Re[H(t;ω0)] = Re[H0e
iω0t] = H0 cos(ω0t),

the magnetization of the system oscillates with the same frequency but with a

phase delay Re[M(t;ω0)] = Re[M0e
i(ω0t−ϕ)] = M0 cos(ω0t− ϕ). When measured in

an oscilloscope, the two signals look like Fig. 2.1B.

AC susceptibility is defined by the ratio of the induced magnetization to the

applied field, with the phase delay considered.

χ(ω0) = M(t;ω0)
H(t;ω0)

= M0

H0
e−iϕ (2.2)

= M0

H0
cosϕ− i

M0

H0
sinϕ. (2.3)

The real and imaginary components of the AC susceptibility, corresponding to the

in-phase and out-of-phase response, respectively, are defined as χ = χ′ − iχ′′.1

χ′ = M0

H0
cosϕ, (2.4)

χ′′ = M0

H0
sinϕ, (2.5)

where the phase delay ϕ > 0 satisfies causality. χ(ω0) is generally frequency-

dependent, so the full-frequency AC susceptibility χ(ω) is obtained by repeating

the above measurements at a series of frequencies. The H0 → 0 limit is assumed

analytically, although an appropriate field size that satisfies this assumption in a

real experiment and simulation has to be scrutinized. In a zero-frequency limit,

the AC susceptibility should result in the DC susceptibility.

χ′(ω → 0) = χDC, (2.6)

χ′′(ω → 0) = 0. (2.7)

1The definition χ = χ′ − iχ′′ gives χ′′ = − Im χ. The negative sign disappears if the phase
evolution over time is chosen to be negative: H(t; ω0) = H0e−iω0t, M(t; ω0) = M0e−i(ω0t−ϕ), and
then χ(ω0) = M0

H0
e+iϕ = χ′ + iχ′′. These two conventions do not make physical differences. In

this thesis, I chose the positive phase evolution that appears to be a natural choice.
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Figure 2.1: (A) Schematic illustration of a magnetization response to an external
magnetic field oscillation. (B) Response of the magnetization M0 cos(ω0t − ϕ), which is
delayed from the external magnetic field H0 cos(ω0t).

2.1.3 AC susceptibility characterized by relaxation

AC susceptibility reflects the characteristic timescale/frequency in a magnetic sys-

tem. In the following example, the relaxation process governs the AC susceptibility.

Consider a simple paramagnet exposed to a small magnetic field Hz parallel to z-

axis. When the z-axis magnetization Mz relaxes to an equilibrium value M eq with a

single relaxation time τ , the time evolution of Mz follows the simple Bloch equation

dMz

dt
= −Mz −M eq

τ .
(2.8)

When the applied field is constant, the equilibrium magnetization is expressed

by the DC susceptibility as M eq = χDCHz. Assuming that this relation holds

for a general oscillating field M eq(t) = χDCHz(t), the differential equation can

be rewritten as

τ
dMz

dt
+Mz = χDCHz(t). (2.9)

This is equivalent to the equation of motion of a damped mechanical system with

no inertia. The equation can be formally solved for each Fourier component as

χ(ω) = Mz(ω)
Hz(ω)

= χDC 1
1 + iωτ .

(2.10)
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Figure 2.2: Frequency dependence of a typical AC susceptibility in a magnetic system
with a single relaxation time. The blue (orange) line is the real (imaginary) part. The
value of the parameters, DC susceptibility χDC = 1 and relaxation time τ = 0.1 s, are
arbitrarily chosen.

Therefore, the typical form of the real and imaginary parts of the susceptibility will

be

χ′ = χDC 1
1 + ω2τ 2 ,

(2.11)

χ′′ = χDC ωτ

1 + ω2τ 2 .
(2.12)

The frequency dependence of these functions is plotted in Fig. 2.2. The charac-

teristic frequency ωτ = 1/τ is inferred from the 50% drop of χ′ and the peak

position of χ′′.

The above phenomenological model of AC susceptibility can account for tem-

perature dependence by making the parameters temperature dependent as χDC(T )

and τ(T ). This treatment is sufficient for a simple paramagnet. However, the

assumption of a single relaxation time τ(T ) = τC(T ) at each temperature can be

overly simplistic for describing a complex spin system. The so-called Harvriliak–

Negami form is empirically known to be useful [64].

χHN(ω) = χDC 1(
1 + (iωτC)1−α

)β

.
(2.13)

A particular case of β = 1 is called the generalized Debye form, and α = 0 is called

the Cole–Davidson form. The Harvriliak–Negami form arises in a spin ensemble
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with a particular form of distributed relaxation times. If the susceptibility χτ (ω)

of an individual relaxing component is given by Eq. 2.10, and the probability

distribution of relaxation times p(τ) is assumed, then χ(ω) is given by

χ(ω) =
∫ ∞

0
dτ p(τ)χτ (ω) = χDC

∫ ∞

0
dτ p(τ) 1

1 + iωτ .
(2.14)

The distribution function behind the Harvriliak–Negami form is then inferred [64]

to be

p(τ) = 1
πτ

(
τ
τc

)(1−α)β
sin

(
β arctan

∣∣∣∣∣ sin πα

( τ
τc )1−α

−cos πα

∣∣∣∣∣
)

[(
τ
τc

)2(1−α)
− 2

(
τ
τc

)1−α
cos πα + 1

]β/2

.

(2.15)

In certain cases, both the real and imaginary susceptibility are known to have

a simple power-law dependence.

χ′(ω) ∝ ω−α, (2.16)

χ′′(ω) ∝ ω−α. (2.17)

Such frequency dependence can be attributed to the following distribution of re-

laxation times (derivation in Appendix A).

p(τ) =

aτα−1 (τmin < τ < τmax)
0 (otherwise),

(2.18)

for τmin ≪ 1/ω ≪ τmax and 0 ≤ α ≤ 1. Specifically, when α = 0, χ(ω) is frequency-

independent and the corresponding relaxation time distribution is p(τ) ∝ 1/τ [66].

2.1.4 AC susceptibility characterized by precession

AC susceptibility can also capture the precessional spin dynamics at an angular

frequency ωE, when there is a large enough density of states to be detected in

the measured frequency range. Consider isotropic spin-1/2 electrons under an

x-direction field Hx, which can be a magnetic field from a coil or an exchange

field from surrounding spins. The precession frequency, corresponding to the spin

excitation energy, is ℏωE = 2µ0µBHx. When a perturbative z-direction oscillating
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field Hz(t) ≪ Hx is applied, the evolution of the spin ensemble is described by

the following Bloch equation2

dM

dt
= µ0γM × H − M − χDCH

τ ,
(2.19)

H = (Hx, 0, Hz(t)) = Re[(Hx, 0, H0e
iω0t)], (2.20)

where the gyromagnetic ratio is γ = −2µB/ℏ for an electron spin. After some

cumbersome calculations (see Appendix A), the real and imaginary susceptibility

is obtained to be

χ′(ω) = χDC

2

(
1 − ωEτ(ω − ωE)τ
1 + (ω − ωE)2τ 2

+ 1 + ωEτ(ω + ωE)τ
1 + (ω + ωE)2τ 2

)
,

(2.21)

χ′′(ω) = χDC

2

(
ωτ

1 + (ω − ωE)2τ 2
+ ωτ

1 + (ω + ωE)2τ 2

)
.

(2.22)

Thus, the AC susceptibility shows a peak at a frequency close to ωE. The precise

fitting of χ′(ω) and χ′′(ω) provides the DC susceptibility χDC, the precession

frequency ωE, and the relaxation time τ .

2.2 Spin Noise

2.2.1 Definition of spin noise

In our spin noise measurement [59], the fluctuation of magnetization is measured

over time. Unlike the AC susceptibility measurement, an external perturbation

field does not need to be applied. One might expect that the magnetization is

constant without an external field perturbation, but that is only true for the mean

value. The magnetization is driven by thermal and quantum fluctuations over time,

showing a fluctuation as sketched in Fig. 2.3. This time series of magnetization

Noise : M(t) (2.23)

has rich information on spin dynamics, which is detailed in this section.
2The relaxation time τ is assumed to be isotropic, although the relaxation along the external

field (in this case x) and that perpendicular to the field (y, z) can generally be different. This
simplification of the equation does not alter the conclusion qualitatively.
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Figure 2.3: (A) Schematic of magnetization noise (∼ spin noise) originating from
quantum and thermal fluctuations. (B) Typical time series of the magnetization noise.

The SQUID measurement scheme, employed in our spin noise spectrometer

described in Chapter 3, directly probes magnetization noise rather than spin noise.

In an insulator where free-electron current is negligible, electron spin fluctuations

dominate magnetization fluctuations. As the total electron spins per volume S/V

and the magnetization M are related by a simple constant

M = 1
V

∑
i

(
−2µB

ℏ

)
si = −2µB

ℏ
S

V ,
(2.24)

the terms ‘magnetization noise’ and ‘spin noise’ are used interchangeably in this the-

sis.

2.2.2 Noise formulated as random process

The magnetization noise time series M(t), discrete in time as M(ti) in experimental

data, can be regarded as the realization of a stochastic process [67]. A random

process is probabilistically predicted based on a set of probability distributions pn.

The probability that the magnetization takes a value between Mi and Mi + dMi

at each time instant ti is expressed as

pn(Mn, tn; . . . ;M2, t2;M1, t1)dMn . . . dM2dM1. (2.25)
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Note that pn describes the probability distribution of magnetization not only at

a single time but also at consecutive time instants. This formulation is necessary

to treat a noise signal that is correlated in time.

The probability distributions pn can also be expressed by conditional proba-

bilities Pn. Pn is related to pn by

pn(Mn, tn; . . . ;M1, t1) = Pn(Mn, tn | Mn−1, tn−1; . . . ;M1, t1)pn−1(Mn−1, tn−1; . . . ;M1, t1)

(2.26)

=
(

n∏
i=2

Pi

)
p1(M1, t1). (2.27)

Certain random processes satisfy special properties. In an ergodic random pro-

cess, a time average defined using any realization M(t) equals an ensemble average.

X := lim
T →∞

1
T

∫ T/2

−T/2
dt X(M(t)), (2.28)

⟨X⟩ :=
∫

dM X(M)p1(M), (2.29)

X = ⟨X⟩. (2.30)

A random process is called Gaussian when its probability distributions are all

Gaussian.

pn(Mn, tn; . . . ;M1, t1) = A exp

−
n∑

j=1

n∑
k=1

αjk(Mj −M)(Mk −M)


.

(2.31)

A random process is called Markov when its most recently known value de-

termines its future probabilities.

Pn(Mn, tn | Mn−1, tn−1 . . . ;M1, t1) = P2(Mn, tn | Mn−1, tn−1). (2.32)

A Markov process is completely characterized by p1(M1, t1) and P2(M2, t2|M1, t1).

In a Gaussian-Markov process, the conditional probability distribution is char-

acterized by only three parameters: the mean M , the variance σ2
M , and the re-

laxation time τ [67].

P2 (M2, t | M1, 0) = 1√
2πσ2

Mt

exp

−

(
M2 −M t

)2

2σ2
Mt


,

(2.33)

where Mt = M + e−t/τ (M1 −M), (2.34)

σ2
Mt

=
(
1 − e−2t/τ

)
σ2

M . (2.35)
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This result is known as Doob’s theorem. In a spin system with a single relaxation

time, the spin noise is Markov and Doob’s theorem applies. When the relaxation

time is distributed in a spin system, the spin noise is not Markov.

2.2.3 Analysis of correlations in noise

One can extract various information from experimental spin noise data M(t). First

of all, the probability distribution p(M) is examined. The distribution function is

characterized by n-th order moments ⟨(M − a)n⟩ where a is a constant, which

equals to (M − a)n in an ergodic process. When ∼ 1020 magnetic moments in

a bulk system fluctuate randomly, the bulk magnetization noise tends to have a

Gaussian distribution according to the central limit theorem. Therefore, it usually

suffices to study mean M and variance σ2
M , which are the first and second-order

moments that fully characterize a Gaussian distribution.

M = (M − 0)1, (2.36)

σ2
M = (M −M)2 = M2 −M

2
. (2.37)

The probability distribution may not be Gaussian when spins show a peculiar time

correlation or when the number of degrees of freedom is small due to the formation

of large ordered domains. In that case, higher-order moments could yield extra

information about the complete functional form of the probability distribution.

Next, the correlations are studied in either the time or frequency domain. A

correlation function extracts the simplest form of correlations in the time domain.

CM(t) = M(s)M(s+ t)s = lim
T →∞

1
T

∫ T/2

−T/2
ds M(s)M(s+ t). (2.38)

Specifically, the correlation at t = 0 equals the variance (+ the squared mean).

CM(0) = M2 = σ2
M +M

2
. (2.39)

The correlation function is often normalized as CM(t)/CM(0) to compare the time

correlation in different conditions and systems.
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The Fourier transform is used to study noise in the frequency domain. As the

Fourier transform is divergent for a noise signal that goes on forever, the noise

signal must be truncated first to ensure that the Fourier transform exists.

MT (t) :=
{
M(t) if − T/2 < t < +T/2,
0 otherwise. (2.40)

The Fourier transform is calculated from the truncated time series as

MT (ω) =
∫ T/2

−T/2
dt e−iωtMT (t). (2.41)

The Fourier transform result has the full information about the original time series

but is complex-valued. One instead uses a power spectral density (PSD)

Stwo−sided
M (ω) = lim

T →∞

1
2πT

|MT (ω)|2 (2.42)

that has less information but is convenient to analyze. The PSD of real-valued

M(t) is an even function. One often folds the negative frequency contribution into

the positive part, making it a one-sided PSD.

Sone−sided
M (ω > 0) = 2Stwo−sided

M (ω > 0) = lim
T →∞

1
πT

∣∣∣∣∣
∫ T/2

−T/2
dt e−iωtMT (t)

∣∣∣∣∣
2

.
(2.43)

In this thesis, a PSD denoted as SM(ω) is one-sided unless explicitly specified other-

wise.

SM(ω) := Sone−sided
M (ω). (2.44)

Theoretically, the correlation function and the PSD contain the precisely same

information, as indicated by the Wiener-Khinchin theorem [67].

SM(ω) = 2
π

∫ ∞

0
dt cos(ωt)CM(t), (2.45)

CM(t) =
∫ ∞

0
dω cos(ωt)SM(ω). (2.46)

Specifically, the t = 0 relation gives
∫ ∞

0
dω SM(ω) = CM(0) = σ2

M +M
2
. (2.47)

Thus, the PSD describes the noise power distribution over different frequencies.
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Finally, general higher-order correlators [59] are defined as

Sn(ω1, . . . , ωn−1) = lim
T →∞

1
(2πT )n/2

(
n−1∏
i=1

MT (ωi)
)
M∗

T

(
n−1∑
i=1

ωi

)
.

(2.48)

The PSD is the second-order correlator, and the higher-order correlators reveal how

the noise components at different frequencies are correlated.

2.2.4 Fluctuation-dissipation theorem of magnetization

The noise PSD is related to the AC susceptibility when the system is in equilibrium.

Consider a magnetization operator M̂(t) of the system. When the magnetization

noise is ergodic, the time-correlation function is expressed by an ensemble average

C(t) =
〈1

2
{
M̂(t), M̂(0)

}〉
. (2.49)

The anti-commutator is used to ensure that the defined correlation function is a

real number [59]. The PSD is obtained by the Wiener–Khinchin theorem (Eq. 2.45)

SM(ω) = 2
π

∫ ∞

0
dt cos(ωt)

〈1
2
{
M̂(t), M̂(0)

}〉
. (2.50)

On the other hand, the Kubo formula expresses the AC susceptibility as an ex-

pectation value in equilibrium. The response to an external field perturbation

−µ0V M̂H(t) is described by the following susceptibility [59]

χ(ω) = V µ0
i

ℏ

∫ ∞

0
dt e−iωt

〈[
M̂(t), M̂(0)

]〉
, (2.51)

∴ χ′′(ω) = V µ0
i

ℏ

∫ ∞

0
dt sin(ωt)

〈[
M̂(t), M̂(0)

]〉
. (2.52)

A comparison of the two expressions Eqs. 2.50 and 2.52 leads to the fluctuation-

dissipation theorem (detailed calculation in Appendix A)

χ′′(ω) = V µ0
π

ℏ
tanh

(
ℏω

2kBT

)
SM(ω). (2.53)

The relation can be rewritten as

SM(ω) = 2ℏ
V µ0π

(
1
2

+ 1
e

ℏω
kBT − 1

)
χ′′(ω). (2.54)



34 2.2. Spin Noise

The first term surviving at T → 0 can be understood as a zero-point fluctua-

tion of the degrees of freedom that comprise the thermal bath [67]. At a high-

temperature limit kBT ≫ ℏω, the second term driven by the thermal excitations in

the bath becomes dominant. The fluctuation-dissipation theorem in this high-

temperature limit is

SM(ω) = 1
V µ0π

2kBT

ω
χ′′(ω) (kBT ≫ ℏω). (2.55)

The fluctuation-dissipation theorem is a powerful tool. Firstly, the validity of the

theorem can be used as a test of equilibrium. When the independent measure-

ments of the noise PSD and the AC susceptibility find the theorem to be invalid,

the system is not in equilibrium. Secondly, the theorem enables a prediction of

the noise PSD from the AC susceptibility and vice versa, which helps plan and

implement experiments.

The magnetization noise PSD SM(ω) can also be directly related to the mag-

netic structure factor Szz(q, ω) in scattering experiments. From a space-time spin-

spin correlation function ⟨sz(0, 0)sz(r, t)⟩,

SM(ω) = 1
πV

(
2µB

N

V

)2 ∫ ∞

−∞
dr w(r)

∫ ∞

−∞
dt e−iωt⟨sz(0, 0)sz(r, t)⟩, (2.56)

where the function w(r) is determined by the sample geometry and local sensitivity

of a pickup coil, and

Szz(q, ω) = 1
2πℏ

N

V

∫ ∞

−∞
dr e−iq·r

∫ ∞

−∞
dt e−iωt⟨sz(0, 0)sz(r, t)⟩. (2.57)

The two quantities are related as

SM(ω) = 2ℏ
V

(2µB)2N

V

∫
dq w̃(q)Szz(q, ω), (2.58)

where w̃(q) is the Fourier transform of w(r).

Measurement of magnetization noise PSD in SQUID spin noise spectroscopy is

complementary to scattering experiments as it probes different parameter ranges.

SQUID spin noise can probe down to sub-Hz (∼ feV) frequency with sub-Hz

resolution, as discussed later in this chapter. If sensitivity of a pickup coil is
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spatially independent, measuring spins in a size-d sample w(|r| < d) = 1 roughly

corresponds to q-space integration by w̃(|q| < 1/d) ∼ 1. The bulk spin noise

measurement of a large sample probes q ∼ 0, while local measurements will allow

detection of larger q.

2.2.5 Noise PSD characterized by relaxation

A noise PSD reflects relaxation time in the same manner as AC susceptibility, as ex-

pected from the correspondence seen in the fluctuation-dissipation theorem. It can

be directly shown by the Bloch equation model of M(t). Instead of a perturbative

AC magnetic field, M(t) is driven by a quantum/thermal fluctuation Aξξ(t).

dMz

dt
= −Mz

τ
+ Aξξ(t), (2.59)

where Aξ is a fluctuation amplitude and ξ(t) is a normalized white noise satisfying

ξ(t)ξ(t′) = δ(t− t′), (2.60)

Sξ(ω) = 2
π

∫ ∞

0
dt cos(ωt)δ(t) = 1

π .
(2.61)

By solving the Bloch equation for each Fourier component,

iωMz(ω) = −Mz(ω)
τ

+ Aξξ(ω), (2.62)

∴ SMz(ω) = τ 2

1 + ω2τ 2 |Aξ|2Sξ(ω), (2.63)

= 1
π

τ 2

1 + ω2τ 2 |Aξ|2. (2.64)

The correct normalization of the noise is imposed as

Aξ =
√

2σ2
Mz

τ ,
(2.65)

SMz(ω) =
2σ2

Mz

π

τ

1 + ω2τ 2 .
(2.66)

Using the Wiener–Khinchin theorem, the exponentially-decaying correlation func-

tion is obtained from the PSD.

CMz(t) = σ2
Mz
e−|t|/τ . (2.67)
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Figure 2.4: Typical form of the power spectral density (A) and the correlation function
(B) in a system with a single relaxation time.

Eqs. 2.66 and 2.67 are plotted in Fig. 2.4. They are the standard form of the

PSD and the correlation function in a system with a single relaxation time. One

can confirm that Eqs. 2.12 and 2.66 satisfy the fluctuation-dissipation theorem in

Eq. 2.55. The high-temperature limit of the theorem is appropriate here, as the

Bloch equation formulation is (semi)classical.

The noise PSD is temperature dependent when the parameters τ(T ) and σ2
Mz

(T )

are. In a simple paramagnet, where the relaxation time τ(T ) generally prolongs

upon cooling, the PSD should behave as shown in Fig. 2.5A. In a correlated spin

state, the relaxation time can get distributed and the functional form of the PSD

is modified accordingly. The empirically useful formula to fit the experimental

PSD in a correlated spin state is

SMz(ω) =
2σ2

Mz

π

τ

(1 + (ωτ)2(1−α))
β

.
(2.68)

The way the parameters α and β are introduced is apparently similar to the

Harvriliak–Negami form of the AC susceptibility (Eq. 2.13), but α and β are not

equivalent in the two formulas. When spins develop a strongly inhomogeneous

state, the relaxation time distribution can be extremely broad over orders of mag-

nitude. The PSD of such an inhomogeneous system can take a scale-invariant
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power-law form

SMz(ω) = Aω−α. (2.69)

An example of the power-law PSD with an arbitrary temperature dependence is

shown in Fig. 2.5B.

2.2.6 Noise PSD characterized by precession

A noise PSD also reflects the precessional dynamics, as AC susceptibility does.

The Bloch equation3 to be solved is

dM

dt
= µ0γM × H − M − χDCH

τ
+ ξ, (2.70)

H = (Hx, 0, 0), (2.71)

ξ =
√

2σ2
M

τ
(ξx, ξy, ξz). (2.72)

After the cumbersome calculations in Appendix A, the z-direction magnetization

noise PSD is obtained as

SMz(ω) =
σ2

Mz

π

(
τ

1 + (ω − ωE)2τ 2
+ τ

1 + (ω + ωE)2τ 2

)
.

(2.73)

3The relaxation time τ is assumed to be isotropic for simplicity.
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The PSD peaks at a frequency close to the precession frequency (excitation energy)

ωE. One can confirm that Eqs. 2.22 and 2.73 satisfy the fluctuation-dissipation

theorem Eq. 2.55. This precession contribution to PSD is generally complicated

to derive (See for example Ref. [50, 52]).

2.2.7 Quantitative estimate of noise magnitude

The magnitude of spin noise depends on various factors: spin density, local spin

magnitude, spin interactions, system size, and so on. In the case of non-interacting

electron spins (s = 1/2) at a 1 nm spacing in a volume V = 1 mm3, independent

1018 spins will generate spin noise of magnitude

√
σ2

M ∼ µ0µB
√
N

V
= 1 × 10−11 T = 10 pT. (2.74)

Assuming that the spin noise PSD is almost flat up to a relaxation frequency of

∼ 10 kHz·rad, the PSD will be of order

√
SM(ω) ∼ 1 × 10−13 T/

√
rad · Hz = 100 fT/

√
rad · Hz. (2.75)

The local spin density is usually higher than assumed here, so the PSD in a

real system is larger than this estimate. Larger local spin magnitude such as

J ∼ 5, 6 from f-orbitals enhances the noise. Ferromagnetic interactions among the

spins greatly enhance the magnetization noise, while antiferromagnetic interactions

suppress it. In any case, to experimentally measure magnetization noise in a

reasonable experimental time, one needs an extreme sensitivity of fT/
√

rad · Hz

order, whereas laboratory magnetic field fluctuations have µT amplitudes.

2.3 SQUID Spin Noise Spectrometer

2.3.1 Principle of SQUID

The Superconducting QUantum Interference Device (SQUID) [68, 69] is the most

sensitive sensor of magnetic flux in existence. A (DC) SQUID is a superconducting

ring separated by two non-superconducting regions that play the role of Josephson

junctions, as schematically shown in Fig. 2.6A. At a constant bias current I, the
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voltage V across the SQUID is Φ0-periodic in the magnetic flux Φ through the

ring, as shown in Fig. 2.6C. The magnetic flux quantum Φ0 = 2.07 × 10−15 T·m2

is tiny, and the sharp slope of order ∂V
∂Φ

= 100 µV/Φ0 [68] makes the SQUID an

extremely sensitive magnetic flux sensor.

V –Φ relation of the SQUID

In a superconductor, a condensate of Cooper pairs forms a macroscopic wave

function with a certain amplitude and phase. A Josephson junction is described

by the phase difference δ between its two superconducting ends. Without inducing

a voltage, superconducting current

IJ = I0 sin δ (2.76)
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flows across the Josephson junction when δ ̸= 0. Here, I0 is a parameter dependent

on temperature, SQUID type, and geometry. When the voltage V across the

Josephson junction is finite, the sum of normal current and supercurrent IJ =

V/R + I0 sin δ flows across the junction, where R is the resistance between the

terminals of the junction. Meanwhile, the phase difference evolves over time as

δ̇ = (2π/Φ0)V. (2.77)

A SQUID is characterized by the phase jump at each Josephson junction δ1,2

and the magnetic flux Φ threading the ring. They are bound by the condition

δ2 − δ1 = 2π Φ
Φ0 ,

(2.78)

modulo 2π, imposed by the single-valuedness of the wave function around the

SQUID ring. Consider when a bias current flowing from one side to another is

externally set to a certain value Itot > 0. For small Itot, the value of phase jumps δ1

and δ2 evolve until they satisfy the relations in Eqs. 2.76 and 2.78, and supercurrent

flows across the SQUID without inducing a voltage.

Itot = I0(sin δ1 + sin δ2) (2.79)

= 2I0 sin
(
δ2 + δ1

2

)
cos

(
δ2 − δ1

2

)
(2.80)

= 2I0 sin
(
δ2 + δ1

2

)
cos

(
π
Φ

Φ0

)
(2.81)

= Ic
tot(Φ) sin

(
δ2 + δ1

2

)
,

(2.82)

where

Ic
tot(Φ) = 2I0 cos

(
π
Φ

Φ0

)
. (2.83)

|Ic
tot|, which is Φ0-periodic to Φ, is the maximum value that can be afforded by

supercurrent alone.

When Itot > |Ic
tot|, normal current starts flowing across the SQUID and induces

finite voltage V . The current flowing across the Josephson junction is the sum

of normal current and supercurrent Itot = V/R + I0(sin δ1 + sin δ2), where R is
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the resistance of the SQUID. This relation turns into a differential equation of δ1

using Eqs. 2.77, 2.78, and 2.82.

Itot = Φ0

2πR
δ̇1 + Ic

tot(Φ) sin
(
δ1 + π

Φ

Φ0

)
. (2.84)

This equation is analytically solvable and gives the time-averaged voltage

V
t = Φ0

2π
δ̇1

t
= R

√
(Itot)2 − (Ic

tot(Φ))2. (2.85)

This V -I relation for the SQUID is plotted in Fig. 2.6B for different values of Φ. At

a constant bias current Itot = Const., V is Φ0-periodic to Φ as shown in Fig. 2.6C.

The introduced SQUID model is a simplified version. The full model, which

includes the capacitance across the Josephson junction and the inductance of the

ring, quantitatively explains the realistic characteristics of a SQUID [68].

Flux-locked measurement

Despite the extreme sensitivity, a bare SQUID can measure only a tiny range of

magnetic flux −Φ0/4 < Φ < +Φ0/4. A SQUID typically has a negative feedback

circuit that cancels out the external flux and extends the measurement range.

When the flux at the SQUID is changed by ∆Φ, the feedback circuit will apply

a cancellation flux Φfb := −Gopen∆Φ, where Gopen is an open-loop gain of the

feedback circuit (i.e. a virtual gain when the SQUID does not sense the cancellation

flux). As a result, the change of the total flux at the SQUID ∆Φtotal caused by

an external flux Φex is suppressed.

∆Φtotal = Φex + Φfb = Φex −Gopen∆Φtotal. (2.86)

∴ ∆Φtotal = Φex

1 +Gopen
∼ Φex

Gopen .
(2.87)

The working range of SQUID is extended to −GopenΦ0/4 < Φex < +GopenΦ0/4,

and the exact value of the original external flux Φex = −(1 + 1/Gopen)Φfb can be

precisely calculated from the voltage (∝ Φfb) induced in the feedback circuit. This

measurement scheme is called a flux-locked loop, as the total flux at the SQUID

is almost locked at the initial value.
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Φex is assumed to be a constant in the simple model above. However, Φex(t)

generally fluctuates over time, and the feedback flux is delayed by a short time td
from the original flux fluctuation at the SQUID.

∆Φtotal(t) = Φex(t) −Gopen∆Φtotal(t− td). (2.88)

In order that the flux in this realistic feedback loop locks in a stable way ∆Φtotal(t) →

Const., a signal integrator has to cut off high-frequency fluctuations at ω ≳ 2π/td.

As schematically shown in Fig. 2.7A, a realistic feedback circuit consists of a

SQUID with the bare transfer coefficient ∂V
∂Φ

; the series of a voltage transformer, a

preamplifier, and a multiplier giving the total gain Gelec; an integrator comprising a

resistor Rint and a capacitor Cint (cutoff at ωint = 1/(RintCint)); a feedback resistor
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Rfb; and a feedback coil that couples to the SQUID with the mutual inductance

Mfb. The voltage across the feedback resistor is read out as the output Vout. The

feedback loop equation of the flux is

∆Φtotal(t) = Φex(t) −Mfb
1
Rfb

1
RintCint

∫ t−td

0
dt′
(
Gelec

∂V

∂Φ
∆Φtotal(t′)

)
.

(2.89)

In the frequency domain, the open-loop gain of the feedback circuit is4

Gopen(ω) = Mfb
1
Rfb

1
RintCint

1
iω
e−iωtdGelec

∂V

∂Φ
= ωFLL

iω
e−iωtd , (2.90)

where ωFLL = Mfb
1
Rfb

1
RintCint

Gelec
∂V

∂Φ .
(2.91)

The locked flux will be

|∆Φtotal(ω)| =
∣∣∣∣∣ 1
1 +Gopen(ω)

Φex(ω)
∣∣∣∣∣ (2.92)

=

1/
√

1 + ω2
FLL
ω2 − 2ωFLL

ω
sin(ωtd)

 |Φex(ω)|, (2.93)

with the corresponding voltage output

|Vout(ω)| = Rfb

Mfb
|Gopen(ω)||∆Φtotal(ω)| (2.94)

= Rfb

Mfb

1/

√√√√1 + ω2

ω2
FLL

− 2 ω

ωFLL
sin(ωtd)

 |Φex(ω)|. (2.95)

The SQUID transfer function is defined by the ratio of voltage output to the

externally applied flux as

GSQUID(ω) = |Vout(ω)|
|Φex(ω)| .

(2.96)

The frequency-dependence of GSQUID(ω) is plotted in Fig. 2.7B for various ωFLL.

As long as ω ≪ ωFLL and ω ≪ 2π/td, the SQUID transfer function takes the

frequency-independent value

gSQUID = GSQUID(ω ≪ ωFLL, 2π/td) = Rfb

Mfb .
(2.97)

4The frequency response of the integrator ωint/(iω) assumed here is ideal. More practical form
is 1/(1 + iω/ωint), which gives the unity gain at low frequency.
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Above ω ∼ ωFLL but still ω ≪ 2π/td, the frequency cutoff introduced by the inte-

grator starts playing a role. The bandwidth of the flux-locked loop measurement

defined by the 3dB cutoff frequency is

ω3dB = ωFLL = Mfb

Rfb

1
RintCint

Gelec
∂V

∂Φ .
(2.98)

While the bandwidth can be extended by changing the feedback resistor Rfb or

the integrator resistor/capacitor ωint = 1/(RintCint), the behavior of the feedback

circuit becomes more unstable as ωFLL approaches 2π/td. Ultimately, the frequency

requirement ω ≪ 2π/td imposed by the delay time limits the bandwidth of a stable

flux-locked loop, which is about 100 MHz·rad due to the typical distance of 1 m

between SQUID and the room-temperature electronics [68]. In a typical SQUID,

the flux-modulation technique described in the next section further reduces the

bandwidth from this flux-locked loop limit.

Flux-modulation technique

The output voltage of a bare SQUID is very small, with the intrinsic voltage noise

level of the order 0.1 nV/
√

Hz [68]. While this small voltage has to be amplified

in the feedback circuit, the SQUID sensitivity is degraded if one directly uses

an electronic amplifier whose typical input voltage noise level is 10 times larger

at 1 nV/
√

Hz. This issue can be avoided by first using a voltage transformer

to amplify the SQUID signal by ∼ 10, and then feeding the signal into an elec-

tronic preamplifier.

A flux modulation technique is typically employed to use the voltage trans-

former even for a low-frequency signal. An oscillator and a multiplier are incorpo-

rated into the feedback circuit as shown in Fig. 2.7A. A modulation signal from

the oscillator, a square wave at an angular frequency ωFM ≫ ωFLL, is applied to

the SQUID via the feedback coil. Its amplitude is adjusted so that the SQUID

state jumps between the two flux-locked points with an opposite sign of ∂V
∂Φ

, as

schematically shown in Fig. 2.7C. This modulates the SQUID output voltage as

V (t) → V (t)f(t), where f(t) is a square wave that flips sign at the modulation
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frequency ωFM. After the modulated SQUID output is successfully amplified

via the voltage transformer and the electronic preamplifier, the modulation part

f(t) is removed by the multiplier (or the lock-in amplifier). While the concept

is simple, a successful flux modulation technique requires a voltage transformer

that has a flat frequency response in the wide frequency range from ωFM to its

harmonics ∼ 10ωFM [69]. With a commonly-used ωFM of order 1 MHz·rad, the

SQUID bandwidth typically gets limited in the range from 10 kHz·rad to several

100 kHz·rad. However, a SQUID system of 100 MHz·rad order bandwidth, close

to the flux-locked loop limit, is also available. Such broad bandwidth is achieved

by a flux modulation at ωFM ∼ 100 MHz·rad, or a direct readout with additional

positive feedback where a flux modulation is not involved [68].

2.3.2 SQUID spin noise spectrometer

To measure magnetization fluctuation noise Mz(t) using a SQUID, a pickup coil

is wound around a magnetic sample and coupled to the SQUID [68] as shown in

Fig. 2.8A. The total magnetic flux penetrating through the pickup coil is

Φp(t) = NpApµ0Mz(t), (2.99)

where Np and Ap are the number of turns and area of the pickup coil, respectively.

The z direction is perpendicular to the cross-section of the coil. The pickup

and SQUID input coils, whose inductance are Lp and Li, respectively, form a

superconducting loop to quantize the threading flux. When the sample generates

magnetic flux fluctuation Φp(t) at the pickup coil, supercurrent Φp(t)/(Lp+Li) flows

in the loop to cancel it out. The supercurrent flowing through the SQUID input coil,

coupled to the SQUID via the mutual inductance Mi, generates magnetic flux ΦS(t)

at the SQUID. Thus, the flux is transferred from the pickup coil to the SQUID as

ΦS(t) = Mi

Lp + Li
Φp(t). (2.100)

The SQUID output voltage is proportional to ΦS(t).

Vout(t) = gSQUIDΦS(t), (2.101)
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Figure 2.8: Schematic drawing of a SQUID spin noise spectrometer (A) and a SQUID
susceptometer (B).

where gSQUID is the transfer function in Eq. 2.97. Therefore, the SQUID output

voltage can be converted to the flux and magnetization at the pickup coil by the

following simple constants.

Φp(t) = αVout(t), α = Lp + Li

Mi

1
gSQUID ,

(2.102)

Mz(t) = α′Vout(t), α′ = 1
NpApµ0

Lp + Li

Mi

1
gSQUID .

(2.103)

All the coefficients comprising α and α′ are known or can be calibrated with high

precision. Note that gSQUID in Eqs. 2.101, 2.102, and 2.103 should be changed to

gSQUIDgpreamp when an electronic amplifier is used to contribute extra gain gpreamp

(Section 3.2.3).

2.3.3 SQUID susceptometer

A conventional AC susceptometer measures magnetic flux via electromotive-force

voltage V EMF = −dΦp
dt

, but it has good sensitivity only at high frequency. The

SQUID’s extreme sensitivity, which extends to the DC signal, makes a good sus-

ceptometer with a broad frequency range. As shown in Fig. 2.8B, one needs to

add a field coil around the pickup coil. The pickup coil is changed from a single

coil to an in-series counter-wound coil, which cancels out the externally applied
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uniform field and prevents the sample signal from being smeared out. The design

of the in-series pickup coil is detailed in Chapter 3.

To measure AC susceptibility χ(ω), an AC voltage Vf = V0 cos(ωt) is applied

across the field coil. An AC magnetic field Hz = H0 cos(ωt) is induced in the

z-direction. H0 is related to V0 by

H0 = nf

Rf
V0, (2.104)

where nf is the number density of the field coil turns and Rf is the resistance

in series with the field coil. Consequently, the magnetization oscillation Mz =

M0 cos(ω0t−ϕ) in the z-direction is induced in the sample. The pickup coil captures

the magnetization as the magnetic flux penetrating through it, which is given by

Φp(t) = NpApµ0M0 cos(ωt− ϕ). (2.105)

The output voltage of the SQUID will be

Vout = gSQUID
Mi

Lp + Li
NpApµ0M0 cos(ωt− ϕ). (2.106)

Using a lock-in amplifier, Vout can be compared to the applied voltage Vf . The

in-phase and out-of-phase components will be

VX = gSQUID
Mi

Lp + Li
NpApµ0M0 cosϕ, (2.107)

VY = gSQUID
Mi

Lp + Li
NpApµ0M0 sinϕ. (2.108)

Therefore, the real and imaginary susceptibility can be converted from VX,Y using

χ′(ω) = M0

H0
cosϕ = Rf

nf

1
gSQUID

Lp + Li

Mi

1
NpApµ0

VX

V0 ,
(2.109)

χ′′(ω) = M0

H0
sinϕ = Rf

nf

1
gSQUID

Lp + Li

Mi

1
NpApµ0

VY

V0 .
(2.110)

All the coefficients on the right-hand side are known or can be calibrated with

high precision.

In the same manner, by applying a DC voltage V0 and recording the output

voltage Vout, the DC susceptibility χDC can be obtained using

χDC = M0

H0
= Rf

nf

1
gSQUID

Lp + Li

Mi

1
NpApµ0

Vout

V0 .
(2.111)
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2.4 Spin noise approach to fingerprinting differ-
ent magnetic phases

2.4.1 Capability of spin noise approach

Experimental detection of spin noise in spin liquids is challenging, largely because a

spin noise signal is usually tiny. Since the pioneering work by Dusad et al., a series

of spin noise study has been performed in a classical spin ice Dy2Ti2O7 [15,62,70]. I

have further developed the technique to apply it for quantum spin liquid candidates

Ca10Cr7O28 [23] and ZnCu3(OH)6Cl2, the main work discussed in this thesis. The

spin noise spectroscopy of quantum magnets is still in the early stage of develop-

ment. Here I separately discuss what is possible with the current spectrometer and

what is potentially possible with the future spectrometers.

With the current SQUID spin noise spectrometer, the accessible frequency

range is from sub-Hz to 100 kHz (feV to neV), making it suitable for studying the

slow dynamics of a magnetic system. The slow dynamics are often dominated by

relaxational spin dynamics, unless precessional spin dynamics exist due to gapless

excitations of massive density. With an extreme sub-Hz frequency resolution of

a SQUID spin noise spectrometer, one can precisely fit a low-frequency power

spectral density. The fitting is very sensitive to the distribution of relaxation

time and can clearly distinguish a system with a single relaxation time (Eq. 2.66),

narrowly distributed relaxation times (Eq. 2.68), and relaxation times broadly

distributed over orders of magnitude (Eq. 2.69). This fitting enables a clear distinc-

tion between a homogeneous magnetic state (e.g. geometrically frustrated classical

spin liquid, quantum spin liquid) and an inhomogeneous one (e.g. spiral spin

liquid with momentum vortices, spin glass, random singlet state). Further, when

the relaxation time distribution is relatively sharp, one can extract the value

and distribution extent of relaxation time τ(T ), whose temperature dependence

hints at the spin excitation and its underlying ground state in the system. For

example, the Arrhenius law τ(T ) ∝ e∆/kBT indicates the existence of an energy

gap in local spin excitations. The precise study of the relaxation time led to
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a discovery of fractal monopole dynamics in a classical spin ice Dy2Ti2O7 [63].

Develpoment of a general microscopic theory of relaxation time, which remains

largely unexplored to my knowledge, could potentially enable further distinctions

among different homogeneous magnetic states and distinctions among different

inhomogeneous states through their relaxational dynamics. I also note that spin

noise spectroscopy of “witness-spins” interacting with a magnetic system has the

potential of evidencing quantum spin liquid, as later discussed in Chapter 5.

Commercial SQUID with a flux-locked loop is available with a bandwidth of

20 MHz (sub-µeV). Going beyond GHz (sub-meV) is also possible if one abandons

the flux-locked loop. Further, using a microscale pickup coil will enable local spin

noise spectroscopy SM(r, ω, T ). When these developments are implemented, spin

noise spectroscopy will also be suitable for studying the precessional spin dynamics

of various spin excitations at different wave vectors and frequencies, as in scattering

experiments. It is predicted that the parameter-dependence of the spin noise PSD

SM(r, ω, T ) can fingerprint different quantum spin liquids [50, 52]. Fingerprinting

classical spin liquids is expected to be also possible, although comprehensive an-

alytical/computational predictions of SM(r, ω, T ) for classical spin liquids have

not been made.

To summarize, the spin noise spectroscopy can clearly distinguish homogeneous

magnetic states (e.g. geometrically frustrated classical spin liquid, quantum spin

liquid, etc.) from inhomogeneous ones (e.g. spiral spin liquid with momentum

vortices, spin glass, random singlet state, etc.) using relaxational dynamics, and

can fingerprint different quantum spin liquids once precessional dynamics can

be locally measured at high frequency. Predictions of relaxational dynamics in

various magnetic states, which are still missing to my knowledge, could enable

further clear distinction within homogeneous states and within inhomogeneous

states. Also, predictions of spin dynamics SM(r, ω, T ) in various classical spin

liquids are strongly motivated to make the technique more useful.

I note that, to observe spontaneous spin noise, the relaxational or precessional

dynamics must be excited thermally (or by external field perturbations). In a
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magnetic system with an energy gap ∆, spin noise is expected to diminish rapidly

as the temperature becomes smaller than the energy gap kBT ≪ ∆. Thus, the

spin noise technique is insensitive to a fully gapped system at low temperatures,

which could in turn enable spin noise to distinguish between gapless and gapped

systems with an extreme energy resolution of feV order.

2.4.2 Comparison of spin noise approach to other tech-
niques

There are different types of established techniques to probe spin dynamics: inelastic

neutron scattering, nuclear magnetic resonance, muon spin rotation, and so on.

Different techniques have their own strengths. AC susceptometry and spin noise

spectroscopy have the following advantages over other techniques.

1. They directly probe the magnetic response of electron spins, not particles

interacting with it.

2. The probe is sensitive to only magnetic signals, so the signal is not con-

taminated by nonmagnetic contributions such as phonons.5 The magnetic

response directly corresponds to spin dynamics in an insulator, where charge-

current is negligible.

3. Zero (or minimal) magnetic field is applied, which enables the study of the

unperturbed equilibrium state.

4. They can probe down to sub-Hz frequency regime with an extreme frequency

resolution of 1 rad·Hz ∼ 1 feV energy scale, whereas the sensitivity of reso-

nance techniques degrades with falling frequency.

Spin noise PSD is related to a magnetic structure factor in neutron/x-ray scattering

(Eq. 2.58). SQUID spin noise spectroscopy is complementary to those techniques as

it can probe much lower frequency and has an extreme frequency resolution, which

enables the precise exploration of the spin relaxation dynamics. The functional
5The effect of nonmagnetic contribution is still observed as a second-order effect, such as

scattering of magnetic spins due to phonon.
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form of spin relaxation noise PSD provides a clear distinction between homogeneous

and inhomogeneous magnetic states, and temperature dependence of relaxation

time value and distribution can also reveal underlying magnetic states, as discussed

in the previous subsection. Further, there is a potential for directly fingerprinting

different spin liquid states when high-frequency and local spin noise measurement

is achieved in the future.

Further, there are key advantages of pursuing spin noise spectroscopy over

AC susceptometry.

1. Spin noise does not require the application of any field. This enables the mea-

surement of an unambiguous zero-field equilibrium state, both experimentally

and computationally. The zero-field condition is particularly important in

studying spin liquids where small fields can easily alter the ground state.

2. Spin noise is a better probe of spin dynamics at low frequency. As the

fluctuation-dissipation theorem at the high-temperature limit (Eq. 2.55) in-

dicates, the spin noise PSD is enhanced by a factor 1/ω compared to the

imaginary susceptibility.

3. The spin noise study of an out-of-equilibrium system, such as a driven sys-

tem or a glassy system, should yield information independent from the AC

susceptibility. Also, higher-order correlators contain unique information on

how the spin noise at different frequencies are correlated [59,71].

4. Spin noise measures the full frequency spectrum in one go without a frequency

sweep of the field, facilitating the study of frequency dependence. This not

only critically saves the experimental time but also the computational time

when one performs a numerical simulation to compare with the experiment.

5. The spin noise spectrometer design is much simpler than the AC susceptome-

ter, as shown in Fig. 2.8. The absence of a field coil will simplify frequency

range extension to MHz and GHz, and provide greater flexibility in the ex-

perimental configuration potentially enabling local spin noise measurement.
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When spin noise PSD and imaginary susceptibility are independently measured, a

comparison between them will be an experimental test of the fluctuation-dissipation

theorem, the validity of which is not a priori guaranteed at low temperatures.

As a final remark, the Nitrogen Vacancy (NV) center measurement is rapidly

being developed to perform high-precision magnetization measurements. However,

its sensitivity pT/
√

Hz is still three orders of magnitude lower than that of SQUID

fT/
√

Hz when this thesis is being written [61]. The three-order difference is critical

because improving the signal-to-noise ratio by 103 requires averaging from 106

times longer measurements.



3
SQUID Spin Noise Spectrometer

In this chapter, I will introduce the development of Superconducting QUantum

Interference Device (SQUID) spin noise spectrometers shown in Fig. 3.1. The

spectrometers are designed to achieve an extreme field sensitivity approaching

10−14 T/
√

rad · Hz under an ultra-low vibration condition, a maximum bandwidth

of 1 MHz·rad, and a temperature range of 10 mK ≤ T ≤ 6000 mK (270 mK

≤ T ≤ 6000 mK) in the cryogen-free dilution (3He) refrigerator.

3.1 Spin noise spectrometer

Fig. 3.2A shows the schematic of the SQUID spin noise spectrometer, which also

serves as a susceptometer. It consists of a signal pickup coil, a SQUID chip, a

field coil (optional), and magnetic-shielding cylinders. As explained in detail in

Section 2.3.2, the pickup coil and the SQUID input coil form a superconducting

loop that transfers the magnetic flux from the pickup coil to the SQUID.

3.1.1 Pickup coil
Pickup Coil fabrication

Pickup coils are manually made of a thin NbTi superconducting wire (Supercon).

A wire whose bare (Formvar-insulated) diameter is 0.125 mm (0.152 mm) is used

53
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Figure 3.1: Overview photo of the SQUID spin noise spectrometer in the 3He
refrigerator (A) and dilution refrigerator (B).

in an initial developing stage, and it is later changed to 0.076 mm (0.091 mm)

to achieve better sensitivity.

Two types of pickup coil were fabricated. The first type is a single coil, suitable

for achieving the highest spectrometer sensitivity. An example of a single coil I

fabricated is shown in Fig. 3.2B. This specific coil has 20 turns and a diameter of

∼ 2 mm. The coil is designed to be freestanding without a solid sample holder,

as the wall thickness of a holder will inevitably reduce the sample-filled fraction
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Figure 3.2: (A) Schematics of a SQUID spectrometer with an astatic pickup coil, which
is equipped with a field coil to also serve as a susceptometer. (B) Photo of a single pickup
coil mounted on an SQ1200 SQUID chip. The pickup coil makes a superconducting
contact with the SQUID input circuit via the niobium pads. In this specific photo, a
ZnCu3(OH)6Cl2 sample is in the pickup coil, and a 0.1 mm-diameter silver wire is glued
to the sample using GE varnish. (C) Photo of an astatic pickup coil, on which a field
coil is wound, mounted on an SP550 SQUID chip. In this specific photo, a Ca10Cr7O28
sample is in the pickup coil, and a 0.1 mm-diameter silver wire is glued to the sample
using GE varnish. (A) is reproduced from Ref. [23] with a minor modification.

of the coil and degrade the signal sensitivity. To fabricate a freestanding single

coil, a wooden or metallic rod of an appropriate diameter of 1–2 mm is used as

a temporary winding core. A 0.2 mm thick polytetrafluoroethylene (PTFE) film

is wrapped around the core, and the NbTi wire is wound closely packed on the
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PTFE film. A nonmagnetic epoxy (Stycast 1266) is carefully spread on top of the

wire and is cured to fix the coil mechanically. After the epoxy fully hardens, the

coil is pulled out from the core, which can be done without difficulty thanks to

the flexibility of the PTFE film. Further, The PTFE film can also be mechanically

removed from the fixed coil. A small amount of PTFE film remains glued inside the

coil, but nonmagnetic PTFE does not generate any magnetic signal that will affect

the measurements. The winding core diameter should be chosen to be close to the

sample size, so that the sample-filled fraction of the finished coil is maximized.1

The second type of coil is an astatic coil designed to measure susceptibility. As

shown in Fig. 3.2C, it is made of two in-series counter-wound coils: a sample coil

to capture the sample signal and a compensation coil to cancel out an externally

applied uniform magnetic flux.2 A freestanding coil is not appropriate here, as the

two coils should be configured as equal as possible to cancel out the uniform flux.

Thus, the astatic coil is wound on a macor sample holder with gaps guiding the

coil position and direction. The diameter of the sample space is 1.6 mm, and the

wall diameter of the sample holder is 0.2 mm — the thinnest limit with reasonable

strength. The coil winding involves extra care so that the geometry of the two coils

is as symmetric as possible. Loctite 495 superglue, which dries instantaneously

and is removable by acetone, is used to fix the coil.

After the coils are fabricated, the Formvar insulation at the wire ends is removed

by a razor blade. The pickup coil inductance of sub-µH is measured by an E4980

Precision LCR meter (Keysight) at 300 kHz using a series equivalent circuit model

(Ls mode). A superconducting contact to the SQUID circuit is made by pressing

the wire end between the SQUID niobium pad and a niobium washer, using a

brass screw that contracts at low temperatures.
1Winding a coil directly on a sample can further improve the sample-filled fraction than this

freestanding-coil method. However, direct winding is difficult for a fragile single crystal that
will easily break off. To measure Ca10Cr7O28 and ZnCu3(OH)6Cl2, whose single crystals are
relatively fragile, fabricating an empty freestanding coil first and inserting the sample later had
a much lower risk of breaking the sample.

2The astatic coils for the experiments discussed in this thesis are wound by Xiaolong Liu and
Jack Murphy. For a different experiment, I designed and fabricated an astatic coil with the same
principle.
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Optimization of coupling between pickup coil and SQUID

When one purchases a commercial SQUID, the following parameters are fixed:

the inductance Li of the SQUID input coil, the mutual inductance Mi between

the input coil and the SQUID, and the intrinsic flux noise power spectral density

(PSD) Sint
ΦS

(ω) at the SQUID. To maximize the measurement sensitivity of the

flux noise PSD SΦp(ω) at the pickup coil, one has to choose appropriate pickup coil

parameters that can maximize the flux PSD SΦS(ω) transferred at the SQUID. Here,

the optimal pickup coil design is derived based on the following two assumptions.

1. The magnetization noise PSD SM(ω) from the sample is inverse-proportional

to the sample volume V covered by the pickup coil SM(ω) ∝ 1/V .

2. The pickup coil is a solenoid whose wire turns are closely packed so that its

length is lp = dwireNp, and a sample completely fills in the pickup coil so that

V = dwireNpAp. Here, lp, Ap, and Np are the length, area, and number of

turns of the pickup coil. dwire is the diameter of the wire.

The inductance of the pickup coil is estimated to be Lp = µ0NpAp(Np/lp) =

µ0NpAp/dwire. As explained in Section 2.3.2, the flux PSD transferred at the

SQUID is given by

SΦS(ω) =
(

Mi

Lp + Li

)2

SΦp(ω) (3.1)

=
(

Mi

Lp + Li
NpApµ0

)2

SM(ω) (3.2)

∝
(

Mi

Lp + Li
NpApµ0

)2 1
dwireNpAp

(3.3)

= µ0

(
Mi

Lp + Li

)2

Lp =: X(Lp). (3.4)

Matching the inductance between the pickup coil and the SQUID input coil Lp = Li

will achieve the best sensitivity with X(Lp) = µ0M
2
i /(4Li).

Note that the sensitivity degradation due to a mismatch between Lp and Li is

not rapid. For example, X(Lp) is 90% of the maximum for Lp = Li/2, and 30%

for even Lp = Li/10. Practically, one tends to be more constrained by the size of
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the single crystal available. If the available crystal is small, maximizing the filling

fraction of the coil should be prioritized over matching the inductance.

3.1.2 SQUID chip

Two types of SQUID chips, an SQ1200 SQUID (Star Cryoelectronics) and an

SP550 SQUID (Quantum Design), are used for different spectrometers. The two

SQUID chips work in a similar principle, although they have different geometries

and parameters. Fig. 3.2B shows the part of an SQ1200 SQUID chip around the

niobium pads. The two niobium pads are the end of the SQUID input coil, and the

pickup makes superconducting contact with them. Star Cryoelectronics reports the

SQUID input coil inductance Li = 1.3 µH, which couples to the SQUID with the

mutual inductance Mi = 16 nH corresponding to 1/Mi = 0.13 µA/Φ0. Fig. 3.2C

shows the part of an SP550 SQUID chip around the niobium pads. Quantum Design

reports Li = 1.7 µH, and Mi = 11 nH corresponding to 1/Mi = 0.19 µA/Φ0.

3.1.3 Field coil

A field coil enables susceptibility measurements, as well as spin noise measurements

under a field. A field coil is incorporated into the spin noise spectrometer by

winding it directly on the astatic pickup coil as shown in Fig. 3.2C.3 The NbTi

superconducting wire with the insulated diameter of 0.091 mm, the same wire as

the pickup coil, is used to wind the field coil with the approximate total length

of ∼ 10 mm and 101 turns.

Calibration of field strength and astatic coil imbalance

The magnetic field strength and the imbalance of the two coils in the astatic coil

(the sample and compensation coil) can be calibrated. Let N be the number of

turns of each coil, A1 and A2 be the area of the sample and compensation coil,

respectively, and B/I be the magnetic flux density B generated by the field coil

3The field coils are wound by Xiaolong Liu and Jack Murphy.
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Figure 3.3: Total flux Φ picked up by an astatic coil when a 1 mm-diameter indium
sample (Tc ∼ 3.4 K) is in the sample coil. Above Tc (red), the magnetic susceptibility of
the indium in the normal state is negligible compared to the superconducting state, and
the slope Φ/I = −2.3 × 106 Φ0/A is dominated by the coil imbalance. Below Tc (blue),
the indium becomes superconducting and dominates the slope −51.4 × 106 Φ0/A.

per applied current I. The total flux picked up by the empty astatic coil is

Φempty = N(A1 − A2)
B

I
I. (3.5)

When a thin rod of superconducting indium (χ = −1) with a known cross-section

AIn is placed in the sample coil, the total flux is given by

ΦIn = N(A1 − A2 + (−1)AIn)B
I
I. (3.6)

By measuring these two Φ-I relations, N(A1−A2)(B/I) and N(A1−A2−AIn)(B/I)

are determined accurately from the slope as shown in Fig. 3.3. The field strength

per current (B/I) and the astatic coil imbalance A1 − A2 are thus obtained.

Fig. 3.3 shows the field sweep response of an N = 10 astatic coil when a 1 mm

diameter indium sample (Tc ∼ 3.4 K) is in the sample coil. Below Tc, the indium

becomes superconducting and exhibits perfect diamagnetism (χ = −1). Above

Tc, the normal indium gives negligible susceptibility. From the measured slopes

N(A1 − A2)B
I

= −2.3 × 106 Φ0/A and N(A1 − A2 − AIn)B
I

= −51.4 × 106 Φ0/A,
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one can calculate the parameters

B

I
= 12.9 mT/A, (3.7)

A1 − A2 = −0.037 mm2. (3.8)

The obtained B/I is close to the value estimated from the geometry

(
B

I

)
estimate

= µ0n ∼ 12.7 mT/A, (3.9)

where n [/m] is the winding number density of the field coil. The pickup coil

imbalance is as small as 1% of the pickup coil cross-sectional area A1 ∼ 3 mm−2.

3.1.4 Magnetic Shielding

The whole SQUID spectrometer is shielded from environmental magnetic flux by

a niobium cylinder and a mu-metal cylinder, as schematically shown in Fig. 3.2A.

For an open-ended cylinder, both axial and transverse fields at the cylinder axis

are attenuated with a factor exp(−z/a), where a is the radius of the cylinder, and

z is the distance from the open end [72]. When either side of the cylinder is closed-

ended, the shielding effect far away from the open end gets highly enhanced. The

attenuation factor is of the order 1000 for an axial field and 100 for a transverse field

for a one-side-closed-ended superconducting shield, when simulated for a cylinder

whose height to radius ratio is 2.6 [73].

For the magnetic shielding of the SQ1200 SQUID spectrometer, a closed-ended

niobium cylinder and an open-ended mu-metal cylinder from the SQUID supplier

(Star Cryoelectronics) are used. The niobium cylinder has the length of 61 mm, the

outer diameter of 17 mm, and the thickness of ∼ 0.6 mm; and the mu-metal cylinder

has corresponding dimensions of 76 mm, 21 mm, and ∼ 1.3 mm, respectively.

A samarium cobalt magnet for vibration isolation (described in Section 3.3) is

located about 100 mm away from the SQUID spectrometer. The extra magnetic

field contribution of the magnet is estimated to be ∼100 µT, comparable to the

earth’s magnetic field. Therefore, this magnet does not significantly degrade the
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SQUID spectrometer performance after shielding, as confirmed by the flat noise

floor without vibration peaks in Fig. 3.5B.

For the SP550 SQUID spectrometer, in addition to a closed-ended niobium

cylinder provided by the SQUID supplier (Quantum Design), another open-ended

niobium cylinder and an open-ended mu-metal cylinder are used. The length, outer

diameter, and thickness are 47 mm, 13 mm, and ∼ 0.3 mm for the provided niobium

cylinder; 153 mm, 52 mm, and 2 mm for the second niobium cylinder; and 300 mm,

60 mm, and 1 mm for the mu-metal cylinder, respectively. The residual magnetic

field inside the shields was estimated to be smaller than 100 nT, as the application of

100 nT field flipped the sign of magnetization aging in ZnCu3(OH)6Cl2 (Chapter 5).

3.2 Electronics

The circuit diagrams for noise and susceptibility measurements are shown in Fig. 3.4.

For simplicity, the feedback circuit of the SQUID (detailed in Section 2.3.1) is

represented by the SQUID transfer function gSQUID. The magnetization response

of the sample is picked up as the magnetic flux and transferred to the SQUID. The

output voltage of the SQUID is amplified and filtered at the voltage preamplifier,

and the final signal is recorded by either an analog-to-digital converter or a lock-in

amplifier. Each step is detailed below.

3.2.1 SQUID control

The four parameters control the SQUID and its feedback circuit: a bias current

(BIAS), a modulation current amplitude (MOD) and phase shift (PHASE), and a

bias flux (OFFSET). The bias current is set high enough so that the SQUID shows a

proper V −Φ curve, as shown in Fig. 2.6C. The modulation current amplitude and

phase shift are relevant to the flux-modulation technique (Section 2.3.1). They

should be adjusted to maximize the multiplier output — the flux modulation

amplitude should correspond to half a flux quantum, and the phase shift should

compensate for the phase delay of the SQUID response reaching the multiplier.

The bias flux is arbitrarily adjusted for convenience.
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Figure 3.4: Circuit diagrams for spin noise measurement (A) and susceptibility
measurement (B). The SQUID feedback circuit of the flux-locked loop is represented
by the SQUID transfer function gSQUID. Figures reproduced from Ref. [23] with a minor
modification.

3.2.2 SQUID flux-locked loop

The SQ1200 SQUID chip is connected to a PFL-100 feedback loop system (Star

Cryoelectronics), operated by a PCS-100 SQUID controller (Star Cryoelectronics).

The nominal value of the mutual inductance between the feedback coil and the

SQUID is Mfb = 0.245 nH corresponding to 1/Mfb = 8.43 µA/Φ0. The feedback

resistance in the High-sensitivity mode is Rfb = 1 MΩ. The integrator capacitance

and resistance are Cint = 1 nF and Rint = 10 kΩ, respectively. The total gain of

the feedback circuit is Gamp = 1.6 × 105. The modulation frequency is 256 kHz.

In some estimates in this section, I use a typical value of ∂V
∂Φ

= 100 µV/Φ0 for
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Figure 3.5: (A) SQUID output voltage jump triggered by a temporary opening of
the SQUID feedback circuit (RESET operation), corresponding to a Φ0-change in the
SQUID flux. The data is measured at 500 mK. (B) Power spectral density of the intrinsic
SQUID flux noise in the High-sensitivity mode (blue) and the extended-bandwidth setting
(orange). The spectrum below 600 rad·Hz is calculated from the 20 kSa/s data, while
that above 600 rad·Hz is from the 1 MSa/s data. Gray dashed lines guide the eye to the
noise floor and the 3 dB cutoff frequency.

the gain of a bare SQUID.

The High-sensitivity mode of the SQUID is typically used in the spin noise

measurement. Fig. 3.5A shows a jump of the SQUID output voltage triggered by

a temporary opening of the feedback circuit (RESET operation) at 500 mK. The

jump corresponds to a Φ0-change in the SQUID flux. Thus, the SQUID transfer

function is obtained as gSQUID ∼ 9.85 V/Φ0. The transfer function has a slight

temperature dependence of less than 1% in the temperature range 100 mK ≤ T ≤

1000 mK, which is ignored in the following experiments.

The SQUID flux noise PSD measured below 1 K is shown in Fig. 3.5B. The

noise floor SΦS(ω) ∼ 1.8 (µΦ0)2/(rad · Hz) is comparable to the spec value SΦS(ω) =

2.5 (µΦ0)2/(rad · Hz) at 4 K.4 The bandwidth defined by the 3 dB power cutoff is

ω3dB ∼ 190 kHz·rad (i.e. f3dB ∼ 30 kHz). The measured values of gSQUID and ω3dB

4Note that a PSD S(ω) in the angular frequency domain (Eq. 2.43), is scaled from a typical
PSD S(f) defined in the frequency domain by S(ω) = S(f)/2π. The SQUID flux noise in a spec
sheet is typically denoted

√
SΦS(f) = 4 µΦ0/

√
Hz.
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are consistent with the estimates from Eqs. 2.97 and 2.98.

gestimate
SQUID = Rfb

Mfb
= 8.4 V/Φ0, (3.10)

ωestimate
3dB = MfbωintGamp

1
Rfb

∂V

∂Φ
= 190 kHz · rad. (3.11)

The Quantum Design SP550 SQUID works using a similar principle. The

following parameters are provided in the spec sheet: Mfb = 1.4 nH corresponding

to 1/Mfb = 1.5 µA/Φ0, the feedback resistance Rfb = 500 kΩ in the range 5

mode (highest sensitivity), and the modulation frequency 500 kHz. The SQUID

transfer function gSQUID = 0.73 V, measured from a Φ0-jump, is consistent with

the estimate gestimate
SQUID = Rfb

Mfb
= 0.75 V/Φ0. The noise floor increases gradually

above 5 kHz·rad to form a broad peak around 100 kHz·rad, followed by a steep

drop at a higher frequency, reminiscent of the example transfer function curve

(ωFLL = 2 × 106 rad·Hz one) in Fig. 2.7B. Such frequency dependence is likely due

to the time delay in the SQUID feedback circuit.

Extension of SQUID bandwidth in SQ1200

The SQ1200 SQUID system allows changes of the feedback resistor Rfb and the

integrator capacitor Cint, with which one can extend the SQUID bandwidth ω3dB ∝

1/(RfbCint) (see Eq. 2.98). From the built-in choices of Rfb and Cint in the PFL-

100 feedback loop, Rfb = 100 kΩ and Cint = 1 nF are chosen so that the estimated

extended bandwidth is ωestimate
3dB ∼ 2 MHz·rad. This change simultaneously reduces

the SQUID transfer function to gSQUID ∼ 0.985 V/Φ0. The intrinsic SQUID noise

in this extended-bandwidth setting is shown as the orange line in Fig. 3.5B. The

actual extended bandwidth ω3dB ∼ 1 MHz·rad (i.e. f3dB ∼ 160 kHz) is smaller than

the estimate, likely due to the time delay in the feedback circuit. The noise floor

has risen with a broad peak appearing around 600 kHz·rad. Note that the SQUID

is intentionally detuned in Fig. 3.5B; otherwise, the peak around 600 kHz·rad

is much sharper.
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Figure 3.6: Voltage noise power spectral density of electronics. The input noise of an
SR560 voltage preamplifier and that of a Moku:Pro analog-to-digital converter are orders
of magnitude lower than the measured intrinsic output noise of an SQ1200 SQUID.

3.2.3 Voltage preamplifier

The output voltage of the SQUID controller is fed into an SR560 voltage preampli-

fier (Stanford Research Systems). It has an input noise level below 4 nV/
√

Hz at

1 kHz, which is orders of magnitude below the intrinsic noise level of the SQUID

output voltage as shown in Fig. 3.6. The preamplifier gain is chosen so that the

preamplifier output spans the full input range of the analog-to-digital converter.

In typical spin noise measurements, 6 dB/oct 0.03 Hz high-pass and 6 dB/oct

30 kHz low-pass filters are applied at the voltage preamplifier to remove the DC

component and the high-frequency components above the Nyquist frequency. For

the SQ1200 SQUID, a 5 kHz 4-pole low-pass filter at the SQUID controller output

is also typically applied. These filter choices are changed as appropriate depending

on the frequency range of interests.

3.2.4 Analog-to-digital converter

A Moku:Pro (Liquid Instruments) is used as an analog-to-digital converter. While

its maximum sampling rate is 5 GSa/s, the ‘Datalogger’ mode allowing a continuous

measurement at a maximum sampling rate of 10 MSa/s with an 18-bit 400 mVpp
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range is typically used. The input voltage noise level is below 500 nV/
√

Hz, which

is orders of magnitude below the intrinsic noise level of the SQUID output voltage

as shown in Fig. 3.6. The 1 MΩ input impedance, DC coupling, and 400 mVpp

range setting is typically used. The Datalogger mode automatically applies a

low-pass filter around the Nyquist frequency to prevent aliasing, but it did not

play a critical role in my measurements. The frequency filters applied at the

SQUID controller output and the voltage preamplifier attenuate high-frequency

components beforehand.

3.2.5 Lock-in amplifier

An SR830 (Stanford Research Systems) is used as a lock-in amplifier. The time

constant τLI and the low-pass filter slope determine the equivalent noise bandwidth

fLI of the signal detection. The slope of the low-pass filter is typically set to

18 dB/oct that renders fLI = 3/(32τLI). Large τLI is generally preferred to detect

a signal in a narrow frequency range. On the other hand, there is a trade-off that

one needs to wait for a long time 9τLI until the lock-in amplifier output reaches

99% of the final value. For a lock-in measurement at frequency f = ω/(2π), τLI is

set to τLI ≥ 3/f so that the signal detection bandwidth is as small as fLI ≤ f/32

while the wait time ∼ 27/f before each measurement is not too long. In a typical

lock-in amplifier measurement, 10 measurements are performed at each frequency

and are averaged to increase the signal-to-noise ratio. The first measurement is

performed ∼ 10τLI after the signal is fed in, and the subsequent 9 measurements

are performed with a minimum time interval of τLI/2. The internal gain of SR830

(‘Sensitivity’) is chosen to be as high as possible without overloading the detector,

and the ‘Low Noise’ dynamic reserve mode is used.

3.3 Vibration isolation

3.3.1 Vibration isolation principle

To achieve the low background noise floor without spikes, as shown in Fig. 3.5B,

isolation of the spectrometer from environmental mechanical vibrations is critical.
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A little magnetic flux will be left trapped inside the spectrometer even after the

magnetic shielding, and a mechanically vibrating spectrometer could capture it

as a strong peak signal.

The following differential equation describes the vibration of an object with a

mass m under a damping constant b and a spring constant k.

mz̈ + bż + kz = f(t), (3.12)

where f(t) represents an external force. The solution of this equation gives the

vibration spectrum

|z(ω)|2 = 1
(ω2 − ω2

0)2 + (γω)2
1
m2 |f(ω)|2, (3.13)

where ω0 =
√
k/m, γ = b/m. A Q-factor Q = ω0/γ is typically used to quantify

the vibration transmission.

One way to achieve good isolation is to make the mass very large. That will

drive ω0 → 0 and the vibration |z(ω)|2 ∼ 1/(mω)2|f(ω)|2 is attenuated as 1/m2.

Our dilution refrigerator is mounted on a 6-ton table and thus is isolated well

from environmental vibration. However, this alone is insufficient for a cryogen-

free refrigerator, in which an incorporated pulse tube generates a strong vibration

that transmits to the bottom mK plate. An additional low-temperature vibration

isolator has to be built under the mK plate, thereby isolating the spectrometer

from the pulse tube vibration noise as well.

3.3.2 Vibration isolator design and performance

Different vibration isolators are designed for the 3He and dilution refrigerators

due to the different available refrigerator space. The vibration isolator in the 3He

refrigerator is shown in Fig. 3.1A, with the corresponding schematic in Fig. 3.8A.5

The vibration isolator plate weighs ∼ 4 kg and is hung under the refrigerator

mK plate with the two extension springs and the two compression springs of the

spring constant k ∼ 1 N/mm (room temperature spec). The two samarium cobalt
5The vibration isolator in the 3He refrigerator was designed and assembled by Jack D. Enright

and Jan Knapp.
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magnets mounted on the isolator plate are at a symmetric position, above which

the copper blocks are mounted on the rods descending from the mK plate. The

magnets cause strong electromagnetic damping to the isolator plate motion by

inducing eddy currents in the copper blocks.

The vibration isolator in the dilution refrigerator is shown in Fig. 3.1B, with

the schematic in Fig. 3.8B.6 It is a two-stage vibration isolator. The first stage

weighs ∼ 1 kg and is hung under the refrigerator still plate with the three stainless-

steel springs of k ∼ 0.03 N/mm. The second stage, which I call the vibration

isolator plate, weighs ∼ 1 kg and is hung under the first stage with the three

stainless-steel springs of k ∼ 0.02 N/mm. These parameters will give a resonance

frequency of order ω0 ∼ 10 rad·Hz. For strong vibration damping, each stage is

equipped with the neodymium magnet. It interacts with the suspended copper

post fixed to the stage above.

The performance of the vibration isolators is evaluated by measuring the accel-

eration noise PSD of the mK plate and the vibration isolator plate. A vibration

sensor GS-20DX (Geospace Technologies) is used. Fig. 3.7A and 3.7B show the

measurement results in the 3He and dilution refrigerator, respectively. In both

refrigerators, the acceleration noise of the isolator is significantly attenuated at

high frequency compared to that of the mK plate. The attenuation factor, defined

as the acceleration noise ratio of the isolator to the mK plate, indeed rapidly drops

above 100 rad·Hz as shown in Fig. 3.7C and 3.7D. There are a few resonant peaks at

low frequency. In the 3He refrigerator, the most dominant peak is at ∼ 54 rad·Hz,

and a Lorentzian fitting yields γ = 1 rad·Hz resulting in a Q-factor of ∼ 50. In

the dilution refrigerator, the most dominant peak is again around 54 rad·Hz, and

a Lorentizan fitting yields γ = 4 rad·Hz resulting in Q ∼ 14.

6The vibration isolator in the dilution refrigerator was designed and assembled by Jack Murphy
and Jonathan Ward.
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Figure 3.7: (A,B) Acceleration noise power spectral density of the mK plate (red) and
the vibration isolator (black) in the 3He refrigerator (A) and the dilution refrigerator (B).
(C,D) Attenuation factor, calculated as the acceleration noise ratio of the isolator to the
mK plate, in the 3He refrigerator (C) and the dilution refrigerator (D). Gray dashed lines
are fitting by three Lorentzians in (C) and two Lorentzians in (D).

3.4 Refrigeration and sample thermalization

3.4.1 Refrigeration
Cryogen-free 3He refrigerator

The first spin noise spectrometer, which I used for my experiment, is built in a

commercial cryogen-free 3He refrigerator, Tertia (ICE Oxford). The schematic dia-

gram of the refrigerator structure is shown in Fig. 3.8A. The refrigerator comprises

four plates: a 50 K plate, a 4 K plate, a 1 K plate, and a mK plate. A pulse tube
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Figure 3.8: Schematics of a cryogen-free 3He refrigerator (A) and a dilution refrigerator
(B).

is incorporated to cool down the 50 K and 4 K plates. A 4He circulation system

is incorporated to cool down below 1 K. 4He gas at room temperature is liquefied

at the 4 K plate and drips down to a chamber on the 1 K plate. Active pumping

of the 4He chamber by a mechanical pump promotes the evaporation of the 4He

liquid, which cools down the 1 K plate. A closed 3He system is incorporated to

reach mK. A 3He chamber on the mK plate is connected to a sorption pump on the

4 K plate, where 3He gas is initially trapped. When the sorption pump is heated

up to ∼ 50 K, the 3He gas is released and is liquefied at the 1 K plate to drip down

to the chamber. When the sorption pump is cooled back to 4 K, the liquid 3He is

pumped out of the 3He chamber to cool the mK plate to 270 mK. The maximum

hold time at the base temperature is about 80 hours.

The refrigerator space is pumped below p = 10−3 mbar at room temperature

using a turbopump. This reduces the thermal conduction through the air and

prevents gas condensation at low temperatures that will contribute extra specific
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heat. Two radiation shields at 50 K and 4 K reduce the intense black body radia-

tion from room-temperature objects, whose power is proportional to T 4 (Stefan-

Boltzmann law).

The spin noise spectrometer is mounted on the vibration isolator that is hung

under the mK plate, as shown in Fig. 3.1A. The four copper foils thermally connect

the mK plate and the isolator. It takes one day to cool down the mK plate to the

base temperature and two more days to cool down the vibration isolator fully.

Cryogen-free dilution refrigerator

The second spin noise spectrometer was built on a commercial cryogen-free dilu-

tion refrigerator, Proteox MX (Oxford Instruments). The refrigerator structure is

schematically shown in Fig. 3.8B. The refrigerator comprises five plates: a 50 K

plate, a 4 K plate, a still plate, a cold plate, and a mK plate. A pulse tube

cools down the 50 K plate and the 4 K plate. A dilution unit consisting of a still

chamber on the still plate and a mixing chamber on the mK plate cools down the

bottom three plates. Both 3He and 4He condense into the mixing chamber, where

a pure 3He liquid phase and a 3He/4He mixture phase coexist. Active pumping

of the still chamber creates an imbalance in the 3He/4He mixture concentration,

and promotes the condensation of the pure 3He into the mixture. This process

cools the mK plate to 10 mK.

The spin noise spectrometer is mounted on the two-stage vibration isolator

that is hung under the still plate as shown in Fig. 3.1B. The first and second stages

are thermally connected to the cold and mK plates, respectively, with the three

copper foils that are 0.3 mm thick and 12 mm wide. It takes two days to cool

down the mK plate to the base temperature and three more days to cool down

the vibration isolator below 50 mK.

3.4.2 Sample thermalization

Thermal conduction through a component is determined by its area A, length L,

and the thermal conductivity of the raw material κ(T ). The cooling capacity
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Q̇ is estimated by

Q̇ = A

L

∫ Thigh

Tlow
dT κ(T ), (3.14)

where Thigh and Tlow are the temperatures of the hot and cold ends, respectively.

The time required to cool down an object with heat capacity C(T ) is calculated

as
∫ Thigh

Tlow
dT C(T )/Q̇.

In general, components to promote thermalization should be designed as thick

and short as possible. Thermally conductive materials such as pure metal are

generally preferred. On the other hand, pure metals with high electric conductivity

are a source of Johnson noise and eddy currents that can affect the measurement of

magnetization noise and AC susceptibility. One should carefully decide the amount

and geometry of metallic components or use a thermally conductive insulator

such as sapphire.

Sample thermalization in 3He refrigerator

To thermalize a sample in the 3He refrigerator, in the initial development, four

0.2 mm-diameter 20 mm-long brass wires were used. One end is attached to the

pickup coil circuitry using GE varnish, to which the sample is also glued with GE

varnish. The other end is in contact with a copper wire that exits the spectrometer

and gets fixed to the mK plate at 270 mK. The cooling capacity of the brass wires,

whose thermal conductivity is κ ∼ 6 × 10−1T W/(K·m) [74], is estimated to be

Q̇ = A

L

∫ T

0.27
dT κ(T ) ∼ 2 × 10−6(T 2 − 0.272) W. (3.15)

The cooling capacity of 30 nW is retained even when the sample is at 300 mK.

A 0.1 mm-diameter 50 mm-long silver wire was also used. The silver wire is

glued directly to the sample using GE varnish. The thermal conductivity of 99.99%

pure silver, whose RRR is estimated to be about 100, is κ ∼ 2×102T W/(K·m) [74].

The estimated cooling capacity Q̇ ∼ 2 × 10−5(T 2 − 0.272) W retains 300 nW even

when the sample is at 300 mK.

As an idealized example of a cooling-time estimate, consider Ca10Cr7O28 (de-

scribed in Chapter 4). Below 500 mK, it has an approximately linear specific heat
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c(T ) ∼ 3.9 × 10−5T J/(mm3·K) [75]. Cooling a 4 mm3 Ca10Cr7O28 sample from

500 mK to 300 mK through the silver wire will take

t0.5→0.3 =
∫ 0.5

0.3
dT

4 × 3.9 × 10−5T

2 × 10−5(T 2 − 0.272)
∼ 9 s. (3.16)

Even in the brass wire setup, the cooling takes only 90 seconds. One should choose

appropriate thermalization wires depending on a desired experimental configura-

tion and a target temperature range.

Sample thermalization in dilution refrigerator

Three 0.2 mm-diameter 50 mm-long silver wires were directly glued to the sample

for thermalization in the dilution refrigerator. When the other end is thermalized

at the 10 mK plate, the cooling capacity

Q̇ = A

L

∫ T

0.01
dT κ(T ) ∼ 2 × 10−4(T 2 − 0.012) W (3.17)

retains 400 nW even when the sample is at 50 mK.

Estimate of flux noise from current Johnson noise

Current Johnson noise in metal generates magnetic flux noise. Ref. [76] provides

the formulas to estimate the flux noise captured by a one-turn pickup coil tightly

wrapped around a long metallic cylinder of radius r and electrical conductivity σ.

The noise floor SΦ(ω = 0) and its cutoff frequency ωc are

SΦ(ω = 0) = 1
2π

4kBTσ
G

2π
µ2

0r
3, ωc ≃ 2π 4.5

πµ0σr2 ,
(3.18)

where G ∼ 1 is a geometrical factor. Using the Wiedemann–Franz law σ = κ
L0T

with L0 = 2.44 × 10−8 W Ω/K2, one can estimate this flux noise from ther-

mal conductivity.

Consider a one-turn pickup coil around a silver wire of a diameter 0.2 mm and

a thermal conductivity κ ∼ 2×102T W/(K·m) (RRR = 100). At 100 mK, the flux

noise at the pickup coil estimated from Eq. 3.18 is SΦ(ω = 0) = (20 µΦ0)2/(rad·Hz).

The flux transferred to the SQUID SΦS(ω = 0) ∼ (0.2 µΦ0)2/(rad·Hz) is smaller

than the noise floor of the SQ1200 SQUID spectromter 1.8 (µΦ0)2/(rad·Hz), but
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just by two orders of magnitude. In the realistic spin noise spectrometer, the pickup

coil turns have a much larger diameter than the silver wire. These turns are less

sensitive to the Johnson noise than assumed here. On the other hand, the multiple

pickup coil turns will result in more Johnson noise detection, potentially making

it comparable to the intrinsic SQUID noise at high temperatures.
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4
Spiral Spin Liquid Noise in Ca10Cr7O28

To demonstrate the emerging concept of fingerprinting spin liquids from spin noise,

I performed spin noise spectroscopy on Ca10Cr7O28. It was initially introduced as

a candidate for a quantum spin liquid (QSL), whereas an experimental observation

of a ring-like spin correlation and semiclassical simulations propose a possible

realization of a spiral spin liquid (SSL) state. However, it has not been established

whether Ca10Cr7O28 is a QSL or a SSL. As I will show in the following, the spin

noise I discovered in Ca10Cr7O28 is overall consistent with the predictions for a SSL

but not those for a QSL, evidencing Ca10Cr7O28 as a SSL.

4.1 Spin liquid candidate Ca10Cr7O28

4.1.1 Structure

Ca10Cr7O28 is a quasi-2D compound consisting of weakly coupled bilayers [77] as

shown in Fig. 4.1. All Cr ions are configured with four O2- ions to form highly

distorted CrO4 tetrahedra, which lift the degeneracy of Cr d-orbitals. Out of

the seven Cr ions in the unit cell of Ca10Cr7O28, six are in a Cr5+ state, and

one is in Cr6+. Magnetic Cr5+ with a singly occupied spin-1/2 forms a distorted

bilayer kagome lattice, where each kagome layer consists of triangular plaquettes

of alternating sizes.

75
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S =1/2

c
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Figure 4.1: Schematic of the distorted bilayer kagome lattice of Cr5+ in Ca10Cr7O28.
Each Cr5+ ion has a singly-occupied spin-1/2 due to the distorted oxygen tetrahedron.
There are six spin-1/2 sites per unit cell. The three spins at the vertices of green
triangular plaquettes form an effective spin-3/2 at low temperatures due to relatively
strong ferromagnetic interactions among them. Figure reproduced from Ref. [23] with a
minor modification.

4.1.2 Physical properties

At high temperatures, Ca10Cr7O28 shows paramagnetic behavior in the DC sus-

ceptibility [78, 79]. A Curie-Weiss fitting in the range 50 K < T < 250 K yields

the effective magnetic moment µeff = 1.74µB per Cr5+ ion, corresponding to that

of a spin-1/2 µeff = 2
√
S(S + 1)µB = 1.73µB. The Curie-Weiss temperature

TCW = +2.35 K indicates ferromagnetic ∼meV interaction, while the deviation

below 5 K proposes a coexistence of antiferromagnetic interactions. The DC

susceptibility is nearly isotropic down to 2 K; however, the full isotropy of spins

remains controversial. 2 K is higher than the proposed exchange interactions

discussed below, and a possible existence of local anisotropic interactions (i.e. a

sizable spin-orbit coupling effect) has been proposed as a Heisenberg Hamiltonian

fails to reproduce the specific heat and the q = 0 structure factor [80, 81].

Ca10Cr7O28 is a potential spin liquid with neither a thermodynamic phase

transition nor spin freezing reported down to 20 mK. The DC susceptibility does
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A B

C D

Figure 4.2: Spin liquid phenomena and crossover behavior at T ∗ ∼ 450 mK observed in
Ca10Cr7O28. (A) Specific heat that does not show a phase-transition peak down to 40 mK.
It shows an anomalous kink at ∼ 450 mK, below which C(T ) decreases approximately
linearly. (B) AC susceptibility |χ(ω)| that shows a broad peak at 300–350 mK and is
strongly frequency dependent from 100 Hz to 20 kHz. (C) Muon relaxation rates, which
are extracted from the zero-field muon spin polarization data that does not show an
oscillation due to a static field down to 20 mK. They indicate electron-spin fluctuations
that slow down on cooling and become persistent below 300–500 mK. (D) Structure
factor from inelastic neutron scattering at 90 mK showing a diffuse ring-like correlation
instead of a well-defined spin-wave mode. (A) is reprinted with permission from Ref. [75]
Copyright (2019) by the American Physical Society. (B, C, D) are reproduced from
Ref. [78] with permission from Springer Nature.

not show a peak or a kink down to 2 K. The zero-field specific heat C(T ) [75, 78]

in Fig. 4.2A does not exhibit a phase-transition peak down to 40 mK. The zero-

field muon spin polarization measurements [78] detect no oscillation, excluding

static magnetic field down to 20 mK. Different probes observe an anomaly around

T ∗ = 450 mK, which is discussed to be a crossover to correlated spin liquid behavior

at low temperatures. The specific heat shows a weak kink around 450 mK and

drops approximately linearly below that temperature. The high-frequency AC

susceptibility |χ(ω)| [78] shows a rapid growth down to 300–350 mK, followed by

a precipitous drop as shown in Fig. 4.2B. The magnitude of AC susceptibility is
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frequency dependent between 100 Hz and 20 kHz, indicating the presence of slow

∼kHz spin dynamics around T ∗. The muon relaxation rates in Fig. 4.2C evidence

electron-spin fluctuations that slow down on cooling and become persistent below

300–500 mK. The structure factor in Fig. 4.2D, observed by inelastic neutron

scattering at 90 mK [75, 78, 79], is diffuse without a well-defined spin-wave mode.

Such a diffuse structure factor excludes a magnetic ordering or a valence bond

solid formation. The spectrum does not disperse along the out-of-plane direction,

which indicates that the spin correlations develop within each bilayer [78]. Two

bands are observed at 0.0–0.6 meV and 0.7–1.5 meV, showing a ring-like closed

contour in q space.

All these observations point to the absence of magnetic order in Ca10Cr7O28 and

exclude non-ordered ‘trivial’ phases such as a spin glass or a valence bond solid.

Ca10Cr7O28 is a potential spin liquid state, with the likely onset of correlated

behavior at T ∗ ∼ 450 mK. The spins remain dynamic down to at least 20 mK

without a symmetry-breaking order, which is orders of magnitude smaller than the

exchange energy scale estimated from the Curie-Weiss temperature TCW ∼ 2 K.

4.1.3 Proposed Hamiltonian

The empirical Hamiltonian of Ca10Cr7O28 is determined from inelastic neutron

scattering of a polarized state at a high external field [79]. Spin interactions are

assumed to be isotropic Heisenberg interactions, as described by

H =
∑
⟨ij⟩

JijSi · Sj, (4.1)

although additional interactions, such as local anisotropic interactions, are pro-

posed to exist in more recent work [80, 81]. The excitation spectrum is fitted by

a model based on spin-wave theory to obtain the exchange parameters Jij, for the

five bonds that are not equivalent by lattice symmetry. Different colors represent

these different bonds in Figs. 4.1 and 4.3. In agreement with the positive Curie-

Weiss temperature in the DC susceptibility, the relatively dominant interactions

are ferromagnetic: the light-green bonds on the top layer (J = −0.27 meV) and
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S = 3/2 monolayer honeycomb
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Figure 4.3: The effective model of Ca10Cr7O28 mapped to a monolayer honeycomb
network. Three spins at the vertices of triangular plaquettes on each layer are bound
by a dominant ferromagnetic interaction to form a spin-3/2. The spin-3/2 network is
frustrated due to the competition between nearest-neighbor ferromagnetic and next-
nearest-neighbor antiferromagnetic interactions. Figure reproduced from Ref. [23] with
a minor modification.

the dark-green ones on the bottom layer (J = −0.76 meV). The dark-blue bonds

on the top layer (J = 0.09 meV) and the light-blue ones on the bottom layer

(J = 0.11 meV) are antiferromagnetic. The interlayer interaction, represented by

the red bonds, is ferromagnetic (J = −0.08 meV). The interlayer interaction being

ferromagnetic instead of antiferromagnetic prevents the trivial singlet formation

between the two layers that would lead to a valence bond solid state.

The so far discussed Heisenberg Hamiltonian of the bilayer kagome lattice can

be simplified as shown in Fig. 4.3. When the three spins on alternative triangular

plaquettes form a S = 3/2 state via the relatively dominant intralayer ferromagnetic

interactions, the original model of interacting spin-1/2 on the distorted bilayer

kagome lattice can be mapped to interacting spin-3/2 on a monolayer honey-

comb lattice [75, 80, 82]. The original interlayer red-bond interaction turns into

a nearest-neighbor ferromagnetic interaction, and the original intralayer blue-bond

interactions become a next-nearest-neighbor antiferromagnetic interaction. These

interactions frustrate the simplified S = 3/2 monolayer honeycomb model.
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4.2 Quantum spin liquid or spiral spin liquid?

To describe the spin liquid behavior of Ca10Cr7O28 below T ∗ ∼ 450 mK, two spin

liquid scenarios have been hypothesized. The first hypothesis is a QSL, whose

concept I introduced in Section 1.2. The dispersion-less excitation spectrum is

consistent with spinon excitations, which are fractional excitations, pointing to

possible quantum entanglement [75, 78]. From the approximately linear tempera-

ture dependence of the specific heat and the low-energy spin structure factor, a

QSL with a spinon Fermi surface has been deduced [75]. Additionally, numerical

simulations using a pseudofermion functional renormalization group theory [78]

and tensor network theory [83] predict a quantum magnetic ground state without

a static magnetization.

Another hypothesis is a SSL.1 As explained in Section 1.1.2, a SSL has de-

generate wavevectors that form a continuous ‘spiral contour’ such as a ring in

reciprocal space (Fig. 1.2A). The sub-extensive degeneracy in a SSL prevents long-

range ordering [86]. The structure factor from inelastic neutron scattering exhibits

a diffuse and ring-like contour [75, 78, 79]. The presumed formation of S = 3/2

via dominant ferromagnetic interactions (Fig. 4.3) renders spins more classical

than S = 1/2. Furthermore, classical Monte Carlo simulation and semiclassical

molecular dynamics simulation [80,82] on the empirical Hamiltonian of Ca10Cr7O28

(Eq. 4.1) predict a SSL with a ring-like spin correlation.

In Ca10Cr7O28, a clear distinction between these two scenarios, a QSL and a

SSL, has not been possible based on the existing observations. Here, I attempt to

make this distinction using spin noise spectroscopy.

1A SSL has been primarily studied in a classical situation, and accordingly, a typical classical
SSL is considered here. The interplay between quantum mechanical effects and a degenerate
spiral manifold leading to a ‘quantum SSL’ is a theoretical possibility [84,85] but is still an open
question.
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4.3 Prediction of quantum spin liquid noise and
spiral spin liquid noise

4.3.1 Prediction of quantum spin liquid noise properties

For a successful fingerprint of the spin liquid state in Ca10Cr7O28, the spin noise

spectrum expectation for a QSL and a SSL is necessary. A recent theoretical

study in Ref. [50] predicts the spin noise spectra of different types of QSLs. The

prediction depends on the two parameter ratios ω/T and dω/v, where ω is angular

frequency, T is temperature, d is the measured length scale, and v is the spinon

velocity. In the ω/T ≪ 1 and dω/v ≪ 1 regime, which should be more relevant to

our current SQUID-based spin noise experiment, a frequency-independent power

spectral density

S(ω) ∝ ω0 (4.2)

is predicted for all Z2 Dirac, Z2 Fermi surface, and U(1) Fermi surface QSLs, with

distinct temperature dependences [50, 52].

4.3.2 Monte Carlo simulation of spiral spin liquid
Lattice and Hamiltonian

Next, to predict a SSL spin noise, I performed a classical Monte Carlo (MC)

simulation tracking the evolution of spins. The low-energy properties of Ca10Cr7O28

can be described fairly accurately by the effective S = 3/2 spins formed by the

dominant ferromagnetic interactions [82], and the S = 3/2 spins can be approxi-

mated by classical terms. Past classical MC simulations and semiclassical molecular

dynamics simulations on Ca10Cr7O28 [80, 82] have successfully replicated the ring-

like structure factor consistent with the experiments [75, 78, 79].

As a Hamiltonian to predict a SSL spin noise, I turned to the following generic

model for a 2D SSL, whose low-temperature behavior is studied in detail and

established by Ref. [22].

H = J1
∑
⟨ij⟩1

θi · θj + J2
∑
⟨ij⟩2

θi · θj + J3
∑
⟨ij⟩3

θi · θj. (4.3)
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Here, θi represents the spin at the site i of a square lattice with periodic boundary

conditions. J1, J2, and J3 are the first, second, and third nearest neighbor spin

couplings on the square lattice. For J1 = −1, J2 > 1/4, J3 = J2/2, the Hamiltonian

gives rise to a spiral contour of degenerate states in reciprocal space. The contour

satisfies 2 cos2 Qx + 2 cos2 Qy + 4 cosQx cosQy = 1/(2J2
2 ) and is shown in Fig. 1.2A

for different values of J2. I use the same parameter values as Ref. [22]: J1 =

−1.00, J2 = 0.28, J3 = 0.14.

The square lattice assumed in the model is different from the honeycomb

lattice in the effective Ca10Cr7O28 model (Fig. 4.3). However, both exhibit a

continuous spiral contour with an approximate circular shape, the key feature of

the SSL physics. Therefore the model is expected to be a good approximation of

Ca10Cr7O28, as discussed in Ref. [22]. The appropriate choice of spin dimensionality

is controversial, with the possible anisotropic effect proposed in Ca10Cr7O28 [80,81].

This led me to perform the simulation both for two-dimensional XY (this section)

and three-dimensional Heisenberg (Appendix C) spins. The SSL phase occurs

regardless of whether the spins are XY [22] or Heisenberg [87], and the simulated

spin noise predictions indeed share qualitatively comparable features. Here, I

mainly discuss the XY-model simulation result, as it shows better agreement with

the subsequently shown experimental spin noise in Ca10Cr7O28.

Equilibration process

The simulation was performed for N = L × L spins, with L = 40 and L =

100. The initial direction of spins is randomly chosen with a uniform probability.

The equilibrium spin configuration at each temperature is obtained by a gradual

cooldown of the system from T = 2|J1| to 0.005|J1| via a step-by-step equilibration

at T = 2 × 0.95r|J1| where 0 ≤ r ≤ 117 (exponential cooling protocol).

Two types of MC updates were employed in this step-by-step equilibration

process, following Ref. [22]. The first update is the standard Metropolis update.

A randomly picked spin attempts to flip to a new direction, which is randomly

selected with a uniform probability. This flip is implemented only with a probability
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Figure 4.4: Visualization of the spins in the equilibration process of the L = 100
spiral spin liquid Monte Carlo simulation. The local spin direction is indicated by the
corresponding color in the top-left color map. The spin direction is random at the high
temperature T = 0.5|J1|, while spatial correlations gradually grow as the system is cooled
to 0.1|J1|, 0.05|J1|, and 0.005|J1|. T = 0.05|J1| corresponds to the spiral spin liquid
state, showing momentum vortices. The equilibration process in the L = 40 system is
comparable. Figure reproduced from Ref. [23] with a minor modification.

.

min(1, e−∆E/T ), where ∆E is the projected energy change due to the spin flip.

The second update is the over-relaxation update. A randomly picked spin θi is

reflected about the local exchange field H i = ∑
j Jijθj. The over-relaxation update

conserves energy and is empirically known to accelerate the equilibration [88]. In

the equilibration process, each Metropolis update is followed by two over-relaxation

updates so that one-third of the updates are Metropolis. N MC updates make up

1 MC step. 5 × 104 MC steps are carried out at each temperature of the step-

by-step equilibration, amounting to the total of 6 × 106 MC steps from T =
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2|J1| to 0.005|J1|.

The equilibration process of the L = 100 system is visualized in Fig. 4.4. Both

the L = 40 and L = 100 results are in accordance with the L = 400 result reported

in Ref. [22]. At high temperatures (T = 0.5|J1|), the system is in a paramagnetic

state with the spins pointing in random directions. When the system is cooled

down, the spins develop a spatial correlation. The state at T = 0.1|J1| is called

a pancake liquid state, as the corresponding structure factor in reciprocal space

is a filled-circle [22, 87]. At T = 0.05|J1|, the system is in a SSL state showing

momentum vortices (Fig. 1.2). The spiral domains become clearer as the system is

further cooled to T = 0.005|J1|. The final spin configuration at each temperature

is recorded as the equilibrated configuration, from which I initiate the subsequent

simulation of the time evolution in equilibrium.

Time evolution in equilibrium

The time evolution of spins is simulated for the L = 40 system using the Metropolis

Monte Carlo algorithm, which approximates the evolution of a spin system interact-

ing with a thermal bath.2 From the equilibrated configuration at each temperature,

the spins are evolved with 107 MC steps consisting only of Metropolis updates. The

MC time is converted to the actual time with the relation 1 MC step = 1 µs, as

determined by comparing the spin-flip rate in the simulation and the experimental

observation (Appendix B). This makes the total simulation time Γ = 10 s.

The average spin x- and y-components

θ̄x (tk, T ) = 1
N

∑
i

θx
i (tk, T ) , (4.4)

θ̄y (tk, T ) = 1
N

∑
i

θy
i (tk, T ) , (4.5)

2The dynamics due to an equation of motion are not considered, as there is no z-direction
exchange field that will give rise to an XY-spin precession. Even if a z-direction field were present,
the interactions at the energy scale of 0.1 meV would only generate a rapid periodic precession
at ∼ 20 GHz (∼ 10 ps). Such a fast precession will be averaged out on the timescale of the
MC simulation and will also be out of the frequency range measured in the current experimental
setup.



4. Spiral Spin Liquid Noise in Ca10Cr7O28 85

Spin noise (x-component)

0.1 sθ
=

0.
5

μ 0
M

=
0.

9 
nT

Spin noise (y-component) T (|J1|)

0.1 sθ
=

0.
5

μ 0
M

=
0.

9 
nT

0.04

0.15

0.30

A B

Figure 4.5: (A) Time sequences of the average x-component spin θ̄x (tk, T ) at eight
selected temperatures in the N = 40 × 40 spiral spin liquid simulation. They show
fluctuations on a timescale longer than 0.1 s. The low-frequency noise amplitude increases
as the system is cooled to T = 0.15|J1| and then rapidly drops below that temperature.
1 MC step is converted to τ = 1 µs. For visual clarity, θ̄x (tk, T ) is down sampled to every
500 MC steps. The frequency components above 1 kHz are filtered out. The magnitude
of the corresponding magnetization noise estimated from Eq. B.5 is indicated by the bar
on the right. (B) The average y-component spin θ̄y (tk, T ) that is statistically equivalent
to the x-component. Figures reproduced from Ref. [23] with a minor modification.

are recorded over the evolution of the spins. They were only recorded every

10 MC steps due to the technical limitations of the data file size. Therefore, the

resulting simulated SSL noise data θ̄x,y (tk, T ) has the total of K = 106 points

(0 ≤ tk ≤ (K − 1)∆t) with the time interval of ∆t = 10 µs.

Figure 4.5 shows θ̄x (tk, T ) and θ̄y (tk, T ) at eight selected temperatures, after

filtering out the high-frequency components above 1 kHz (Appendix B). The noise

exhibits slow fluctuations on a timescale longer than 0.1 s. The noise magnitude

grows down to T ∼ 0.15|J1| and then rapidly drops below that temperature.

The peak-to-peak value reaches almost θ ∼ 0.5, corresponding to the estimated

magnetization of µ0M ∼ 0.9 nT (Appendix B). As expected from the symmetry,

θ̄x (tk, T ) and θ̄y (tk, T ) are statistically equivalent.
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4.3.3 Prediction of spiral spin liquid noise properties

As already mentioned, the simulated SSL noise data at each temperature θ̄x,y (tk, T )

has the total duration of Γ = 10 s, with the time interval of ∆t = 10 µs between the

K = 106 points (0 ≤ tk ≤ (K − 1)∆t). To investigate the noise property in more

detail, its power spectral density (PSD) Sθ̄x
(ωj, T ) is calculated using the formula

Sθ̄x,y
(ωj, T ) = 1

πΓ

∣∣∣∣∣∆t
K−1∑
k=0

e−iωjtk θ̄x,y (tk, T )
∣∣∣∣∣
2

,
(4.6)

where ωj/(2π) = j/Γ (0 ≤ j ≤ K/2). An average is taken over 10 indepen-

dent MC runs. To increase the signal-to-noise ratio, I averaged the calculation

results from split segments as detailed in Appendix B. PSDs with the resolution of

∆ω/(2π) = 1, 10, 100 Hz are obtained by averaging PSDs from the P = 10, 102, 103

split segments, respectively. As shown in Fig. 4.6A, the obtained PSD grows in

power to T = 0.15|J1|, and rapidly drops below that temperature. The PSD

becomes scale-invariant below T = 0.15|J1|, showing the intense low-frequency

noise down to at least ω/(2π) = 1 Hz.

Next, the correlation function Cθ̄x,y
(tk, T ) is calculated. To address the low-

frequency fluctuations, as we later do in the experimental analysis, the fluctuations

above 1 kHz are first filtered out from θ̄x,y (tk, T ) (See Appendix B). From this

filtered data, the correlation function is calculated using the standard formula

Cθ̄x,y
(tk, T ) = 1

lave

lave−1∑
l=0

θ̄x,y (tl, T ) θ̄x,y (tl+k, T ) , (4.7)

where lave = 9 × 105. An average is taken over 10 independent MC runs. The

obtained normalized correlation function Cθ̄x
(tk, T )/Cθ̄x

(0, T ) is shown in Fig. 4.6B.

The decay of the correlation is rapid at high temperatures, but it slows down upon

cooling as the functional form approaches nearly Cθ̄x,y
(t, T ) ∝ − ln t.

As the PSD is found to be scale-invariant below T = 0.15|J1|, its frequency-

power-law exponent is examined. Fig. 4.7A shows the fitting of the 1 Hz-resolution

PSD Sθ̄x
(ω, T ) ∝ ω−α(T ) in the range 1 Hz ≤ ω/(2π) ≤ 500 Hz. The obtained

exponent, plotted in Fig. 4.7B, approaches α(T ) = 1.2 ± 0.1 at the lowest tem-

perature. As discussed in Section 2.2.5, the standard PSD of a system with a
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Figure 4.6: (A) Power spectral density Sθ̄x
(ωj , T ) of the simulated spiral spin liquid

noise θ̄x(tk, T ) for eleven selected temperatures. It grows in power down to T = 0.15|J1|
and then rapidly drops, having a scale-invariant form at low temperatures. The error
bars are given by the standard error of averaging 10 independent Monte Carlo runs. The
power spectral density of the corresponding magnetization noise SM (ωj , T ) estimated
from Eq. B.5 is shown on the right-hand axis. (B) Normalized correlation function
Cθ̄x

(tk, T ) /Cθ̄x
(0, T ) of the simulated spiral spin liquid noise θ̄x(tk, T ), calculated after

filtering out the fluctuations above 1 kHz, for eight selected temperatures. The decay of
correlation is rapid at high temperatures. It slows down upon cooling and approaches
nearly a logarithmic form, as can be compared to the exemplary logarithmic curve
1 − 0.15 ln(t(ms)) (dashed gray). Figures reproduced from Ref. [23] with a minor
modification.

single-relaxation time shows a low-frequency plateau ω0 and a high-frequency decay

ω−2 (Eq. 2.66). The ω−1.2 slope is very different, and it cannot be attributed to

a temporal crossover from ω0 to ω−2 as the scale-invariant PSD spans the wide

frequency range of nearly three orders. This could imply a broad distribution of

relaxation times, which is in line with the spatially inhomogeneous spin texture

in a spiral spin liquid phase (Fig. 4.4).

Finally, the variance corresponding to the total noise power is calculated from
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Figure 4.7: (A) Fitting of the 1 Hz-resolution power spectral density Sθ̄x
(ω, T ) ∝

ω−α(T ) of the simulated spiral spin liquid noise in the range 1 Hz ≤ ω/(2π) ≤ 500 Hz.
(B) The obtained frequency-power-law exponent α(T ) that reaches 1.2±0.1 at the lowest
temperatures. (C) Variance σ2

θ̄x,y
(T ) of the simulated spiral spin liquid noise θ̄x,y(tk, T ),

calculated after filtering out the fluctuations above 1 kHz. The variance grows down to
T = 0.15|J1| and then decreases approximately as T 2.5 (blue line). The estimated value
of the corresponding magnetization noise variance σ2

M (T ) is shown on the right-hand axis.
Figures reproduced from Ref. [23] with a minor modification.

the data with > 1 kHz fluctuations filtered.

σ2
θ̄x,y

(T ) = 1
K

K−1∑
k=0

θ̄2
x,y (tk, T ) −

(
1
K

K−1∑
k=0

θ̄x,y (tk, T )
)2

.
(4.8)

An average is taken over 10 independent MC runs. The calculated variance in

Fig. 4.7C increases down to T = 0.15|J1|, then decreases below that temperature.

Both the increase and decrease are very rapid, with the variance magnitude chang-

ing by at least one order in the shown temperature range. The decline below

T = 0.15|J1| is approximately described by the T 2.5 temperature dependence.

In summary, the spin noise simulated with the SSL Hamiltonian (Eq. 4.3) has

the following properties. Below T = 0.15|J1|, the PSD becomes scale-invariant

with the intense low-frequency noise spanning at least from 1 Hz to 500 Hz. The
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frequency power law at the lowest temperature is approximately ω−1.2, close to ω−1.

The decay of the correlation function slows down upon cooling and approaches a

nearly − ln t behavior. The variance rapidly increases down to T = 0.15|J1| and

then decreases precipitously with the approximate power law T 2.5.

4.4 Experiment

4.4.1 Sample preparation

As described in Ref. [77], the Ca10Cr7O28 crystals are synthesized in a two-step pro-

cess: a solid-state reaction of Ca10Cr7O28 powder and a traveling-solvent-floating-

zone growth of single crystals.3 First, the powder of CaCO3 and Cr2O3 was

mixed with a molar ratio of 3:1, sintered at 1000 ◦C for 24 hours, and then

rapidly quenched to room temperature. The sintering process was repeated after

grinding and adding more Cr2O3 powder until the phase-pure powder of Ca10Cr7O28

was obtained. This powder was formed into a rod and sintered at 1020 ◦C for

12 hours, followed by a rapid quench to room temperature. The obtained rod was

used as the feed and base rod of the floating-zone growth. A solvent with lower

melting temperature was separately prepared from the powder of CaCO3 and Cr2O3

following the same procedure but with a different molar ratio of 5:2. The rods and

the solvent are configured in an optical-floating-zone furnace as shown in Fig. 4.8A.

The growth was performed at a 0.22 MPa oxygen pressure at a growth rate of

1 mm/hr. Figure 4.8B shows the photo of the growth process. The melted region

is gradually shifted up so that a single crystal gradually grows on top of the base

rod. The synthesized single crystal was washed with HCl and then with H2O.

Figure 4.8C shows the photos of the synthesized Ca10Cr7O28 single crystals.

The c-axis of the sample is identified to be the long direction of the bar. Sample 1′

and Sample 2 are separate parts from the same growth. Sample 3 is from a different

growth. Sample 1 is obtained by polishing down Sample 1′ so that it fits into the

astatic pickup coil spectrometer (Fig. 3.2C).4 Powder x-ray diffraction on a small
3I synthesized Ca10Cr7O28 crystals with the support of Masahiko Isobe.
4The crystal was polished by Dharmalingam Prabhakaran.
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Figure 4.8: (A) Sintered Ca10Cr7O28 rods and solvent configured in an optical zone
furnace. (B) Floating-zone growth process of a Ca10Cr7O28 single crystal. (C) Photos of
the three synthesized Ca10Cr7O28 single crystals. Sample 1 is obtained by polishing down
Sample 1′. A nylon block of a similar size is used for the measurement of background
noise. (D) DC susceptibility of Sample 3 measured by an MPMS. The result of a Curie-
Weiss fitting χ = χ0 + CCurie

T −TCW
, which yields a Curie-Weiss temperature TCW = +2.6 K

and a Curie constant CCurie = 2.1 K·emu/mol corresponding to an effective magnetic
moment µeff = 1.69µB, is shown (red line). (C, D) are reproduced from Ref. [23] with a
minor modification.

.

ground piece confirms the phase purity, and x-ray Laue diffraction confirms the

lattice structure.5 Figure 4.8D shows the DC susceptibility of Sample 3 measured

5The x-ray Laue diffraction was performed by Pascal Puphal.
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by an MPMS (Quantum Design). Fitting the data by the Curie-Weiss law

χ = χ0 + CCurie

T − TCW
(4.9)

in the temperature range 50 K ≤ T ≤ 250 K yields a Curie-Weiss temperature

TCW = +2.6 K and a Curie constant 2.1 K·emu/mol, corresponding to an effective

magnetic moment µeff = 1.69µB. The value is consistent with the theoretical

expectation for an S = 1/2 electron spin µeff = 1.73µB and is comparable to the

values previously reported for Ca10Cr7O28 [79, 89].

4.4.2 Spin noise measurement

The spin noise measurements were performed in two spectrometers: an astatic coil

connected to an SP550 SQUID (Quantum Design) in a dilution refrigerator and a

single coil connected to an SQ1200 SQUID (Star Cryoelectronics) in a 3He refrig-

erator. The design of the SQUID spin noise spectrometers is detailed in Chapter 3,

with the circuit diagram shown in Fig. 3.4A. Here, I only summarize the important

parameters. For the SP550 SQUID setup, the parameters were: pickup coil turns

Np = 10, the pickup coil inductance Lp = 0.75 µH, the input coil inductance

Li = 1.74 µH, the inverse input-coil-SQUID coupling 1/Mi = 0.19 µA/Φ0, and

the SQUID transfer function gSQUID = 0.73 V/Φ0. Four 0.2 mm-diameter brass

wires were used to thermalize the sample. For the SQ1200 SQUID setup, the

parameters were: Np = 10, Lp = 0.25 µH, Li = 1.30 µH, 1/Mi = 0.13 µA/Φ0, and

gSQUID = 9.85 V/Φ0. A 0.1 mm-diameter silver wire was glued to the sample

for thermalization.

The primary spin noise data of Ca10Cr7O28 consists of SQUID output voltage

recordings of a 1000 s duration and a 20 kSa/s sampling rate (a time interval of

50 µs) at temperatures from 100 mK to 800 mK. Sample 1 was measured in the

dilution refrigerator from 100 mK to 500 mK in steps of 50 mK, and Sample 2

was measured in 3He refrigerator from 300 mK to 800 mK in steps of 100 mK.

The measurement results from these two setups are combined as later described

in Fig. 4.16C. In the both refrigerators, the temperature was controlled with a
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Figure 4.9: Time sequences of the flux noise Φ(tk, T ) measured in Ca10Cr7O28 at
eight selected temperatures. They show fluctuations on a timescale much longer than
0.1 s. The low-frequency noise amplitude grows as the system is cooled down to 400 mK
and then rapidly drops below that temperature. For visual clarity, Φ(tk, T ) is down-
sampled so that the time interval of plotted points is 500 µs. The frequency components
below 0.05 Hz and above 1 kHz are filtered out. The corresponding magnetization noise
is indicated by the bar on the right. Figure reproduced from Ref. [23] with a minor
modification.

stability of 1 mK by a heater, and the samples were thermalized for at least

15 minutes at the target temperature before the measurements. A preamplifier

(SR560) with an appropriate gain was used to apply 0.03 Hz 6 dB/oct high-pass

and 30 kHz 6 dB/oct low-pass filters, and the 5 kHz 4-pole low-pass filter of the

SQ1200 SQUID system was also applied in the 3He refrigerator. The SQUID

background noise was measured for the nonmagnetic nylon sample at 800 mK in

the 3He refrigerator in the same condition.

The extended-bandwidth spin noise measurement (Section 3.2.2) of Ca10Cr7O28

was performed for Sample 2 in the 3He refrigerator. The SQUID bandwidth was

extended to f3dB ∼ 160 kHz, which involved the SQUID transfer function change to

gSQUID = 0.985 V/Φ0. The SQUID output voltage was recorded for 100 s at 1 MSa/s

from 300 mK to 800 mK in steps of 100 mK. The SQUID background noise was

measured for the nonmagnetic nylon sample for 10 s at 1 MSa/s at 275 mK.

The recorded SQUID output voltage V (t, T ) at each temperature is converted

into the flux noise Φ(t, T ) at the pickup coil and the magnetization noise M(t, T )
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using Eqs. 2.102 and 2.103. Figure 4.9 shows the measured Ca10Cr7O28 flux

noise Φ(t, T ) at eight selected temperatures, after filtering out the high-frequency

components above 1 kHz (Appendix B). The noise exhibits slow fluctuations on a

timescale much longer than 0.1 s. The noise magnitude grows down to T ∼ 400 mK

and then rapidly diminishes below that temperature. The peak-to-peak value of

the corresponding magnetization noise is of the order µ0M ∼ 0.2 nT.

4.4.3 AC susceptibility measurement

The AC susceptibility measurements were performed in the same setup as the spin

noise measurements, the astatic coil connected to the SP550 SQUID in the dilution

refrigerator. The design of the SQUID susceptometer is detailed in Chapter 3, with

the circuit diagram shown in Fig. 3.4B. The parameters are the same as those of

the spin noise measurements, except that the SQUID is changed to the range 500

mode (lowest sensitivity) with gSQUID = 7.3 mV/Φ0. The reference output of the

lock-in amplifier was connected to the field coil across a 20 kΩ resistor.

The measurements were performed for Sample 1 from 100 mK to 500 mK in

steps of 50 mK. At each temperature, an AC magnetic field with a root-mean-

square magnitude of µ0H0/
√

2 = 60 nT was applied in a frequency range 0.1 Hz

≤ ω/(2π) ≤ 101 Hz, and the corresponding SQUID output voltage was fed into the

lock-in amplifier to measure the in-phase and out-of-phase components. For the

detection settings of the lock-in amplifier, the time constant was set to 30 s, 10 s,

3 s, and 300 ms for the frequencies 0.1–0.3 Hz, 0.5–0.9 Hz, 1–11 Hz, and 21–101 Hz,

respectively. The 18 dB/oct low-pass filter slope was chosen for all the frequencies.

The internal gain was appropriately chosen between 10 mV and 50 mV at different

temperatures. At each frequency, 10 measurements were performed and the results

were averaged. The temperature was controlled by a heater with a stability of 1 mK,

and the sample was thermalized for at least 20 minutes at the target temperature

before the measurements. The universal phase was set by referencing the phase

outcome at 0.1 Hz in a calibration experiment, which measured a superconducting

indium wire of a size comparable to the Ca10Cr7O28 samples.
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Figure 4.10: Measured real (A) and imaginary (B) part of the AC susceptibility of
Ca10Cr7O28 at nine selected temperatures. A 60 nT AC magnetic field was used for the
measurement.

The real and imaginary susceptibility, obtained by converting the lock-in am-

plifier output voltage using Eq. 2.109 and 2.110, are shown in Fig. 4.10. The real

part χ′ is nearly frequency-independent in the measured frequency range. The

imaginary part χ′′ exhibits a positive slope at high temperatures but becomes

nearly flat below 400 mK.

4.5 Experimental Analysis

4.5.1 Spin noise analysis

Each time sequence of the flux noise Φ(tk, T ) has the total duration of Γ = 1000 s,

with the time interval of ∆t = 50 µs between the K = 2 × 107 data points (0 ≤

tk ≤ (K − 1)∆t). Its PSD SΦ(ωj, T ) is calculated from the formula

SΦ (ωj, T ) = 1
πΓ

∣∣∣∣∣∆t
K−1∑
k=0

e−iωjtkΦ (tk, T )
∣∣∣∣∣
2

,
(4.10)

where ωj/(2π) = j/Γ (0 ≤ j ≤ K/2). The obtained PSD is shown as a contour plot

in Fig. 4.11 and as a typical xy plot in Fig. 4.12A. The PSDs with the resolution

of ∆ω/(2π) = 10−1, 100, 101, 102 Hz are calculated from the P = 102, 103, 104, 105

split segments (Appendix B). The PSD grows in power down to ∼ 400 mK and

then drops rapidly below that temperature, as shown in Fig. 4.11. The crossover
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Figure 4.11: Contour plot of the power spectral density SΦ (ωj , T ) of the measured
Ca10Cr7O28 flux noise Φ(tk, T ) from 100 mK to 800 mK. The magnitude increases down
to ∼ 400 mK and then decreases rapidly below that temperature. Figure reproduced
from Ref. [23] with a minor modification.

temperature ∼ 400 mK is coincident with ∼450 mK of the specific heat weak

kink [75,78], 300–350 mK of the AC susceptibility maximum [78], and 300–500 mK

of the muon relaxation rate saturation [78]. This closeness in temperature proposes

that the detected spin noise has the same origin as the spin liquid phenomena

observed by the other experimental probes. The PSD is scale-invariant, showing

the intense low-frequency noise down to at least ω/(2π) = 0.1 Hz, as shown

in Fig. 4.12A.

The PSD of the extended-frequency measurement is plotted in Fig. 4.13. The

spectrum below 3 kHz is from the primary spin noise data. That above 3 kHz is from

the extended-frequency measurement data, where the PSDs with the resolutions

of ∆ω/(2π) = 103 and 104 Hz are calculated from the P = 105 and 106 split

segments (Appendix B). The contribution of Ca10Cr7O28 spin noise is clearly de-

tected in the extended-frequency measurement, despite the elevated SQUID noise

floor. The Ca10Cr7O28 spin noise thus spans the wide frequency range at least

from 0.1 Hz to 50 kHz.

Next, the correlation function CΦ(tk, T ) is calculated. The analysis of the PSD
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Figure 4.12: (A) Power spectral density SΦ (ωj , T ) of the measured Ca10Cr7O28 flux
noise Φ(tk, T ) for eleven selected temperatures. The spectrum is scale-invariant and shows
the intense low-frequency noise down to ω/2π = 0.1 Hz. The error bars are given by the
standard error of averaging the PSDs from the split segments. The power spectral density
of the corresponding magnetization noise SM (ωj , T ) is shown on the right-hand axis. (B)
Normalized correlation function CΦ (tk, T ) /CΦ (0, T ) of the measured Ca10Cr7O28 flux
noise Φ(tk, T ), calculated after filtering out the fluctuations below 0.05 Hz and above
1 kHz, for eight selected temperatures. The correlation decays logarithmically, as can be
compared to the exemplary logarithmic curve (1−0.14 ln(t(ms))) (dashed gray). Figures
reproduced from Ref. [23] with a minor modification.

.

indicates that, above ∼ 1 kHz, the SQUID noise in the SP550 setup is comparable

to the Ca10Cr7O28 spin noise contribution. Also, the fluctuations below 0.05 Hz

could be affected by the slow temperature fluctuation. To address only the intact

spin noise from the Ca10Cr7O28 sample, I first filtered out the fluctuations below

0.05 Hz and above 1 kHz from Φ(tk, T ) (Appendix B). From this filtered data, the

correlation function is calculated using the standard formula

CΦ (tk, T ) = 1
lave

lave−1∑
l=0

Φ (tl, T )Φ (tl+k, T ) , (4.11)

where lave = 1.9 × 107. The normalized correlation function CΦ(tk, T )/CΦ(0, T ),

shown in Fig. 4.12B, exhibits the logarithmic decay CΦ (t, T ) ∝ − ln t. It is distinct
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Figure 4.13: Power spectral density SΦ (ωj , T ) of the measured Ca10Cr7O28 flux noise
Φ(tk, T ) in the frequency range 0.1 Hz ≤ ω/(2π) ≤ 50 kHz for six temperatures. The
background noise from a nonmagnetic nylon block is also plotted (black-dotted line).
The noise below 3 kHz is from the primary noise data, and that above 3 kHz is from the
extended-frequency measurement with an elevated noise floor. The PSD of Ca10Cr7O28
above 3 kHz is plotted after subtracting the background noise, resulting in the smooth
PSD across 3 kHz. The power spectral density of the corresponding magnetization noise
SM (ωj , T ) is shown on the right-hand axis. Figure reproduced from Ref. [23] with a
minor modification.

from a typical exponential decay with a single relaxation time, and could imply a

broad distribution of relaxation times as p(τ) ∝ 1/τ [66].

The frequency-power-law exponent of the scale-invariant PSD is examined. Fig-

ure 4.14A shows the fitting of the 0.1 Hz-resolution PSD SΦ(ωj, T ) ∝ ω−α(T ) in the

range 0.1 Hz ≤ ω/(2π) ≤ 20 Hz, and the obtained exponent α(T ) is plotted in

Fig. 4.14B. The exponent is in the range 0.84 < α(T ) < 1.04 at the measured

temperatures, approaching 1 at the lowest temperature. This is very different from

the low-frequency plateau ω0 or the high-frequency decay ω−2 of a standard PSD

with a single relaxation time (Eq. 2.66).

Finally, the variance corresponding to the total noise power is calculated from
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Figure 4.14: (A) Fitting of the 0.1 Hz-resolution power spectral density SΦ (ω, T ) ∝
ω−α(T ) of the experimental Ca10Cr7O28 flux noise in the range 0.1 Hz ≤ ω/(2π) ≤ 20 Hz.
(B) The obtained frequency-power-law exponent α(T ) approaching 1 at the low temper-
atures. (C) Variance σ2

Φ(T ) of the measured Ca10Cr7O28 flux noise Φ(tk, T ), calculated
after filtering out fluctuations below 0.05 Hz and above 1 kHz. The variance grows down
to T ∼ 400 mK and then decreases as T 2.3 (blue line). The broad peak coincides with
the crossover temperature T ∗ = 450 mK of the specific heat [78] (gray dashed line). The
value of the corresponding magnetization noise variance σ2

M (T ) is shown on the right-
hand axis. Figures reproduced from Ref. [23] with a minor modification.

the data, whose < 0.05 Hz and > 1 kHz fluctuations are filtered out.

σ2
Φ(T ) = 1

K

K−1∑
k=0

Φ2 (tk, T ) −
(

1
K

K−1∑
k=0

Φ (tk, T )
)2

.
(4.12)

The calculated variance in Fig. 4.14C increases down to T ∼ 400 mK and then

decreases below that temperature. Both the increase and decrease are very rapid,

with the variance magnitude changing by nearly two orders in the shown temper-

ature range. The decline below the crossover peak is described by the power-law

temperature dependence σ2
Φ(T ) ∝ T β with β = 2.3 ± 0.1.

In summary, the experimentally measured spin noise in Ca10Cr7O28 has the

following properties. The PSD is scale-invariant with the intense low-frequency

noise spanning at least from 0.1 Hz to 50 kHz. The frequency power law at
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the low temperatures is ∼ ω−1. The correlation function shows the logarithmic

decay − ln t. The variance rapidly grows down to T ∼ 400 mK and then drops

rapidly with the power law T 2.3.

4.5.2 Fluctuation-dissipation theorem

0.1 0.2
Imaginary susceptibility, χ′′

0.1

0.2

χ′
′=
S
M

×
V
μ 0
π
ω

/(2
k B
T)

T (mK)
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Fluctuation vs. Dissipation
0.1 –– 100 Hz

100
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Figure 4.15: Comparison between the simultaneously measured magnetization noise
power spectral density SM (ω) and the imaginary susceptibility χ′′(ω) of Ca10Cr7O28.
V µ0

πω
2kBT SM (ω) is plotted against χ′′(ω) over the frequency range 0.1 Hz ≤ ω/(2π) ≤

100 Hz and the temperature range 100 mK ≤ T ≤ 500 mK. The plot is on a single
line y = x, demonstrating that the fluctuation-dissipation theorem holds down to at
least 0.1 Hz and 100 mK in Ca10Cr7O28. Figure reproduced from Ref. [23] with a minor
modification.

The magnetization noise PSD SM(ω) and the AC susceptibility χ(ω) of Ca10Cr7O28

were measured in the same experimental setup, which allows a direct compari-

son. In Fig. 4.15, the magnetization PSD, converted as V µ0
πω

2kBT
SM(ω), is plotted

against the imaginary susceptibility χ′′(ω). The data points are on a single line

y = x, demonstrating that the fluctuation-dissipation theorem (Eq. 2.55) holds

down to at least 0.1 Hz and 100 mK in Ca10Cr7O28.

χ′′(ω) = V µ0
πω

2kBT
SM(ω). (4.13)
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This indicates that the dynamical equilibrium is maintained in the observed Ca10Cr7O28

spin noise phenomena down to at least 0.1 Hz.

4.5.3 Reproducibility of Ca10Cr7O28 spin noise

The reproducibility of the spin noise phenomena is examined by repeating the

measurements. The three Ca10Cr7O28 samples (Sample 1′, Sample 2, and Sample 3)

and the nonmagnetic nylon block, shown in Fig. 4.8C, were measured in the 3He

refrigerator. The SQUID output voltage was recorded for 100 s at 1 MSa/s at

the temperatures from 275 mK to 800 mK, in steps of 25 mK for the Ca10Cr7O28

samples and 100 mK for the nylon sample. The only frequency filter used was the

1.6 Hz AC coupling filter at the analog-to-digital converter (Moku:Pro) input. The

0.1 Hz-resolution PSD calculated from the P = 103 split segments (Appendix B) is

shown in Fig. 4.16A. The PSD at 300 mK, 500 mK, 700 mK, and 800 mK exhibits

a scale-invariant form for all samples. On the other hand, the nylon noise floor

barely changes over temperature and remains smaller than the Ca10Cr7O28 noise.

The variance, calculated after filtering out the fluctuations above 1 kHz, peaks at

T ∼ 400 mK for all the Ca10Cr7O28 samples as shown in Fig. 4.16B. Thus, the

reported spin noise phenomena in Ca10Cr7O28 are confirmed to be robust.

The primary spin noise data, measured in the two Ca10Cr7O28 samples (Sam-

ple 1 and Sample 2 in Fig. 4.8C) over the different temperature ranges, has been

reconciled as follows. The amplitude of magnetization noise M(t) depends on

a sample volume, and the amplitude of flux noise Φ(t) further depends on the

cross-sectional area of the sample. A scale factor is naturally required to combine

noise measured in two samples with different geometry, and, in principle, one can

only match the scale of either Φ(t) or M(t). Throughout the Ca10Cr7O28 noise

discussion in this section, Φ(t) matching has been prioritized. Φ(t) of Sample 2 has

been scaled from the original value by a factor of 0.95; namely, Φ(t, T ) = Φ1(t, T )

for Sample 1 data and Φ(t, T ) = 0.95Φ2(t, T ) for Sample 2 data. In this way, the

flux noise power spectral densities of the two samples coincide, as exemplified by
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Figure 4.16: Comparison of the spin noise from three Ca10Cr7O28 samples and a
nonmagnetic nylon block. (A) Flux noise power spectral density SΦ(ω, T ). It is scale-
invariant for all the Ca10Cr7O28 samples, and the Ca10Cr7O28 noise exceeds the nylon
background noise. (B) Flux noise variance σ2

Φ(T ) calculated after filtering out the
fluctuations above 1 kHz. It shows a broad peak at T ∼ 400 mK and a similar
temperature dependence for all the Ca10Cr7O28 samples. (C) Comparison of the flux
noise power spectral density SΦ(ω, T ) of Sample 1 and Sample 2 at the same temperature
300 mK. SΦ(ω) of Sample 2 is scaled by 0.952, which makes the two flux noise power
spectral densities nearly identical. The corresponding magnetization noise power spectral
density SM (ω, T ) on the right axis is converted using the geometry of Sample 1. Figures
reproduced from Ref. [23] with a minor modification.

the 300 mK data in Fig. 4.16C. M(t, T ) has been converted from Φ(t, T ) using the

geometry of Sample 1 for the both samples.
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Figure 4.17: (A) Power spectral density Sθ̄x
(ωj , T ) of the simulated spiral spin liquid

noise θ̄x(tk, T ) at the temperatures below T = 0.15|J1|. (B) Power spectral density
SΦ (ωj , T ) of the measured Ca10Cr7O28 flux noise Φ(tk, T ) at the temperatures below
T = 400 mK. Figures reproduced from Ref. [23] with a minor modification.

4.6 Discussion

4.6.1 Noise evidences Ca10Cr7O28 as a spiral spin liquid

There is wide-ranging agreement between the predicted SSL spin noise and the

measured Ca10Cr7O28 spin noise, as directly compared in Fig. 4.17. Firstly, the

magnetic field fluctuations of order 0.1 nT span the broad frequency range of at

least 1 Hz ≤ ω/2π ≤ 500 Hz. The PSD is scale-invariant S(ω) ∝ ω−α(T ), with

the frequency power-law exponent α(T ) approaching a value close to 1 at the low

temperatures. Secondly, the correlation function decays with a nearly logarithmic

form C(t) ∼ − ln t. Thirdly, the variance increases upon cooling and then rapidly

decreases below the crossover temperature T ∗, with the power-law temperature

dependence of ∼ T 2.5. On the other hand, the measured spin noise is distinct from

the predictions for different QSLs, namely a frequency-independent PSD. Thus,

the overall correspondences between the SSL simulation and the Ca10Cr7O28 spin

noise measurement evidence that Ca10Cr7O28 is a SSL, not a QSL.
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4.6.2 Possibility of conventional spin glass in Ca10Cr7O28

The frequency dependence of the spin noise PSD, indicating the broad distribution

of relaxation time, is reminiscent of a disorder-induced conventional spin glass.

However, a conventional spin glass appears unlikely in Ca10Cr7O28, if not fully

ruled out. The experimental demonstration of the fluctuation-dissipation theorem

in Fig. 4.15 indicates that spins in Ca10Cr7O28 are not frozen to at least 0.1 Hz

and 100 mK. This makes spin freezing in Ca10Cr7O28 unlikely, although freezing

at even lower frequency and temperature has not been fully excluded. I note

aside that the temperature dependence of spin noise variance σ2
M(T ) ∼ T 2.3, cor-

responding to DC susceptibility χDC ∼ T 1.3 (fluctuation-dissipation theorem), is

exceptionally rapid. A spin glass explanation, if it exists, must explain such a

rapid temperature dependence.

The saturating muon relaxation rate [78] evidences persistent spin fluctuations

down to 20 mK, which is in accordance with non-freezing spins. Ref. [78] also re-

ports AC susceptibility with a frequency-dependent peak, which is usually regarded

as a signature of a conventional spin glass, but the relatively sharp distribution

of relaxation time in the relevant ∼10 kHz regime suggests that Ca10Cr7O28 is

different from a conventional spin glass.

A conventional mechanism of spin glass formation is inherent randomness due

to disorder. Cr5+ bilayer kagome in Ca10Cr7O28 is fully connected, and no disorder

effect has been known. Two position choices of the nonmagnetic Cr6+ [77] could in

principle introduce bond randomness in the rather distant magnetic Cr5+ network,

but such effect has not been evidenced. The relatively sharp distribution of re-

laxation time at ∼10 kHz [78] also appears against strong inherent randomness in

Ca10Cr7O28. The spiral spin liquid simulation, where an emergent non-local spiral

pattern occurs, does not require inherent randomness to account for the slowing

down of spin dynamics and inhomogeneity. Based on these discussions, spiral spin

liquid appears more consistent for Ca10Cr7O28 than a conventional spin glass.
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4.6.3 Next developments in simulation and experiment

To make a clear identification of Ca10Cr7O28 as a SSL, further refinement of the SSL

simulation will be beneficial. Here I repeat that I turned to the well-studied generic

Hamiltonian of a 2D SSL [22]. I compared it to the experiment under an assumption

that the q-space spiral contour with an approximately circular shape, the key

feature of the SSL physics shared by both the model and Ca10Cr7O28, make them

correspondent irrespective of the real-space lattice. However, there are simulation

predictions that are not experimentally observed. Firstly, the simulation predicts

a specific heat peak that is discussed as a non-symmetry-breaking transition [22],

which is not experimentally observed in Ca10Cr7O28 [75, 78]. Secondly, at T > T ∗,

the simulated PSD (Fig. 4.6A) starts showing a flat noise plateau, while the

experimental PSD (Fig. 4.12A) retains the power-law behavior. These discrepancies

indicate that some additional factors in actual Ca10Cr7O28 are not fully considered

in the generic model simulation. The simulation in the more realistic Ca10Cr7O28

Hamiltonian is certainly sought after, although that first requires the refinement of

the controversial Ca10Cr7O28 Hamiltonian [80,81]. In addition, in order to develop

physical understanding, an analytical spin noise prediction of dynamical spin spirals

is now posed as a key challenge for the field.

Spin noise spectroscopy of other 2D spiral spin liquid compounds, such as

FeCl3 [19], will be beneficial to firmly establish spiral spin liquid noise. That

requires modification of the spin noise spectrometer design as FeCl3 is air sensi-

tive and reportedly shows a long-range magnetic order below 8.5 K. The sample

has to be sealed in a vacuum container without sacrificing a pickup-coil filling

factor too much, and the sample has to be warmed up separately from the su-

perconducting spin noise spectrometer. Search for more 2D spiral spin liquid

compounds is motivated.

Nevertheless, the overall agreement between the presented SSL simulation and

the Ca10Cr7O28 experiment evidences Ca10Cr7O28 as a SSL. In a broader context,

this work introduces the spin noise spectroscopy technique to spin liquid studies
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and demonstrates its potential for fingerprinting a spin system, thereby opening

a new avenue for spin liquid research.
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5
Spinon-Mediated Witness-Spin
Interactions in ZnCu3(OH)6Cl2

Herbertsmithite ZnCu3(OH)6Cl2 is an iconic quantum spin liquid candidate with

a kagome layer of S = 1/2 spins and antiferromagnetic interactions of J ∼ 190 K.

Despite decades of study, the exact spin ground state of ZnCu3(OH)6Cl2 has

remained controversial. While much research effort has focused on the kagome

layer, I propose an alternative strategy to exploit interlayer Cu2+ spins due to

Cu2+/Zn2+ intersubstitution. The interlayer spins interact with each other via

the kagome layer, thus ‘witnessing’ the physical properties of the kagome spin

dynamics. The spin noise I have discovered in ZnCu3(OH)6Cl2, attributed to the

interlayer witness-spin dynamics, undergoes a sharp transition at 260 mK. The

experimental observations are overall consistent with spinon-mediated interactions

between interlayer Cu2+ spins, via the spectrum of spinons in a quantum spin

liquid state within the kagome layer.

5.1 Spin liquid candidate ZnCu3(OH)6Cl2

5.1.1 Structure

ZnCu3(OH)6Cl2 [47,48] is a quasi-2D compound consisting of S = 1/2 Cu2+ kagome

layers separated by nonmagnetic Zn2+ triangular layers as shown in Fig. 5.1. A

107
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Substitution

ZnCu3(OH)6Cl2

Zn2+ (S = 0)
Cu2+ (S = 1/2)

c

a b

Figure 5.1: ZnCu3(OH)6Cl2 crystal lattice structure. S = 1/2 Cu2+ kagome layers are
separated by nonmagnetic Zn2+ triangular layers. Substitution of the interlayer Zn2+ by
Cu2+ exists. Substitution of the kagome Cu2+ by Zn2+ is also proposed although it is
more controversial.

perfect kagome lattice with R3-m symmetry is indicated by single-crystal x-ray

diffraction [90], making it one of the best realizations of the kagome S = 1/2

Heisenberg antiferromagnetic lattice. However, substitution between nonmagnetic

Zn2+ and spin-1/2 Cu2+ exists due to their close ionic radii, as proposed by

structural studies [91–94] and quasi-free spin contributions observed in DC sus-

ceptibility [95–97], specific heat [92,98–100], nuclear magnetic resonance [101–105],

and so on. An exact percentage of the substitution remains to be determined.

Neutron diffraction studies [91–93] propose that ∼ 30% of the Zn2+ sites and

∼ 10% of the Cu2+ sites are inter-substituted, meanwhile an x-ray anomalous

dispersion study [93] indicates that 15% of the Zn2+ sites are replaced by Cu2+

and that the Cu2+ kagome plane remains intact so that the true stoichiometry

is Zn0.85Cu3.15(OH)6Cl2. Substitution percentages from different techniques and

analyses range from 15% to 36% for the Zn2+ sites and from 0% to 10% for the

Cu2+ sites. From now on, I will refer to the substitution-induced interlayer Cu2+

spins as ‘witness-spins’, for the reason explained later in Section 5.2.1.

5.1.2 Physical properties

ZnCu3(OH)6Cl2 is an insulator with the charge gap of ∼ 3 eV [106], so the discussion

of low-energy properties is primarily based on localized electrons. At high tempera-
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A B

Figure 5.2: Spin liquid phenomena in ZnCu3(OH)6Cl2. (A) Specific heat that does
not show a phase transition peak down to 80 mK. (B) Inelastic neutron scattering at
0.75 meV, 2.0 meV, and 6.0 meV showing diffuse excitations without a well-defined spin-
wave mode. (A) is reprinted with permission from Ref. [108] Copyright (2021) by the
American Physical Society. (B) is reproduced from Ref. [109] with permission from
Springer Nature.

tures, the bulk DC susceptibility χ(T ) [95,97] of ZnCu3(OH)6Cl2 exhibits the Curie–

Weiss temperature TCW ∼ −300 K indicating the antiferromagnetic exchange of

J ∼ 190 K. At low temperatures in the range of 1 K ≤ T ≤ 10 K, there is an addi-

tional Curie-Weiss contribution with TCW ∼ −1 K, whose magnitude corresponds

to spin-1/2 witness-spins at ∼ 30% of the Zn2+ sites [95–97]. Nuclear magnetic

resonance (NMR) [101–105] observes a local susceptibility from the kagome layer,

which contributes to the high-temperature bulk DC susceptibility and decreases be-

low 100 K. The NMR [101–105] and electron spin resonance [107] studies attribute

the low-temperature bulk DC susceptibility to quasi-free spins, which arise from

the Cu2+/Zn2+ intersubstitution forming the reservoir of witness-spins.

ZnCu3(OH)6Cl2 is a potential spin liquid, with neither phase transition nor spin

freezing definitely reported. The zero-field specific heat C(T ) [92, 99, 100,108,110]

does not exhibit any phase-transition peak down to 80 mK, as shown in Fig. 5.2A.

The DC susceptibility χ(T ) at 0.1 T does not report a transition down to 10 mK [95].
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Inelastic neutron scattering studies reveal the broad diffusive excitation spectrum

in reciprocal space without a sharp spin-wave mode down to 50 mK [109, 111].

Interpretation of the ZnCu3(OH)6Cl2 excitation spectrum is problematic. The

low-energy diffuse scattering at 0.4 meV, located around (HKL) = (100) and

(003
2), is attributed to the interlayer Cu2+ witness-spins. Those scatterings may

be naturally explained by a nearest-neighbor antiferromagnetic spatial correlation

between the interlayer spins [98, 109]. The scatterings above ∼ 1 meV are dom-

inated by 2D excitations, indicating a contribution from the kagome layer [98],

and resembles the simulation of randomly arranged nearest-neighbor singlets in

the kagome layer [109]. While the excitation spectrum is gapless down to at least

0.13 meV [111], whether the kagome layer spin dynamics is ultimately gapped or

gapless remains a mystery [104, 105, 112].

5.1.3 What is spin liquid state of ZnCu3(OH)6Cl2?

Different quantum magnetic ground states have been proposed for ZnCu3(OH)6Cl2.

A prime candidate is the formation of a QSL state in the kagome layer. There

are experimental investigations pointing to a gapless QSL [92, 105, 109, 113], some

specifying a U(1)-Dirac type [101, 103, 113], and also those pointing to a gapped

QSL [98,104]. In addition, from the power-law behavior and the scaling law of the

physical quantities, a spin liquid state close to a quantum critical point [99,110,114]

or random-disordered states such as a random singlet state [32, 34, 100] and a

Griffiths phase [110] are proposed. Thus, despite decades of study, the spin liquid

state of ZnCu3(OH)6Cl2 has not been established. In an attempt to reveal the

ground state of the kagome layer, here I introduce spin noise spectroscopy for

the study of ZnCu3(OH)6Cl2.
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5.2 Prediction of witness-spin properties with spinon-
mediated interactions

5.2.1 Interlayer spins are ‘witnesses’ to kagome layer

As discussed in the previous section, 15%–36% of the interlayer S = 0 Zn2+ sites

are replaced by S = 1/2 Cu2+, and the resulting interlayer spins interact with

each other. There is an antiferromagnetic correlation between nearest-neighbor

interlayer spins [98], with an approximate energy scale of ∼ 1 K [95]. The path

of such a nearest-neighbor interaction has to cross the kagome layer, and therefore

the interlayer S = 1/2 spins ‘witness’ the physics of the kagome layer. Hence, I

will refer to the interlayer spins as ‘witness-spins’, and predict their properties.

5.2.2 Spinon-mediated interaction

Suppose the kagome layer is in a gapped QSL state, supporting gapped spinon

excitations [98, 104]. Then the kagome layer should mediate spinon-mediated

interaction among witness-spins [115].1

Let us model two witness-spins Si,Sj at sites i, j interacting via a kagome layer,

as shown in Fig. 5.3A. Each witness-spin couples to all three of their closest spins in

the kagome layer, which then mediates the interaction between the witness-spins.

The combined spin susceptibility between the two three-kagome-spin plaquettes can

be defined as χij = ∑
a,b χ

ab
ij , where the indices 1 ≤ a, b ≤ 3 denote each kagome

spin in the plaquette. The spinon-mediated interaction then can be described as

AχijSi ·Sj, where A is a parameter defining the overall interaction scale. Therefore,

the Hamiltonian describing multiple witness-spins is

H = A
∑
ij

χijSi · Sj. (5.1)

The spin-spin susceptibility χab
ij between spins in the kagome layer is calculated

for a gapped Z2[0,π]β QSL, which is a leading contender for the S = 1/2 kagome
1The modeling in this subsection and the Monte Carlo simulation data in the following

subsection are contributed by Mitikorn (Ion) Wood-Thanan, Miguel Angel Sanchez Martinez,
and Felix Flicker, with guidance from Michael R. Norman. I fitted the simulation results.
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Figure 5.3: (A) Schematic of a spinon-mediated interaction between two witness-spins,
mediated by a presumed quantum spin liquid state of a kagome layer. (B) Spin-spin
susceptibility χij of kagome spins for a gapped QSL, with a characteristic decay length
R0 = 0.44d (d: Cu-Cu distance within the kagome layer).

Heisenberg model [116,117]. Due to the gap, χab
ij is expected to decay approximately

exponentially over distance |Ra
i − Rb

j| as

χab
ij ∝ exp

(
−

|Ra
i − Rb

j|
R0

)
. (5.2)

The calculated χij is visualized in Fig. 5.3B. The nearest-neighbor witness-spin

interaction is antiferromagnetic, which is in line with the neutron scattering ob-

servation [98].

Two free parameters control the witness-spin Hamiltonian in Eq. 5.1: the

interaction decay length R0 and the overall interaction scale of Aχij. We chose R0 =

0.44d, which provides the best quantitative correspondence with the experimental

ratio of the transition temperature to the Curie-Weiss temperature T ∗/TCW = 0.24

(discussed below). Then, the scale of Aχij is chosen to make the nearest-neighbor

witness-spin interaction AχNN = 1.5 K, so that the simulated TCW of the witness-

spin is consistent with the experimental value TCW = −1.1 K (discussed below).
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5.2.3 Monte Carlo simulation of witness-spins with spinon-
mediated interactions

Simulation setup

A Monte Carlo (MC) simulation was performed to explore the properties of witness-

spins governed by the spinon-mediated interactions in Eq. 5.1. The full lattice

consists of 45 × 15 × 12 Zn sites, where each site is occupied by spin-1/2 with

a probability of 33%. The occupation percentage 33% is chosen based on the

single crystal x-ray diffraction and low-temperature magnetic susceptibility of the

ZnCu3(OH)6Cl2 single crystal used in my experiment (Section 5.3.1), and is con-

sistent with the existing reports [91–93, 96, 97]. The resulting number of spin-

occupied sites N is on average 2673, and N MC updates make up one MC step.

The boundary condition is periodic in all directions. While the physical spins are

quantum Heisenberg S = 1/2, a simplified model of classical Ising spins with easy

c-axis is used in this simulation.2 Accordingly, the Hamiltonian is simplified to

the interactions among Ising spins

H = A
∑
ij

χijSiSj. (5.3)

As discussed in the previous section, the Hamiltonian parameters are chosen to

be R0 = 0.44d and AχNN = 1.5 K.

Spin Noise Prediction

The witness-spin spin noise is simulated for a temperature range from Tini = 500 mK

to Tfin = 100 mK in steps of ∆T = 20 mK. A random site-occupation configuration

is first prepared, as each site is occupied by a spin-1/2 with the probability of

33%. Starting from a random spin-direction configuration, the system is initially

equilibrated at Tini with 1000 MC steps. Then, consecutively from high to low
2The classicality is an assumption required to run a simple classical Monte Carlo simulation.

While the classicality assumption does not have a clear physical justification, classical spins can
also feel the spinon-mediated interactions, the key feature of the model, and are expected to
provide useful information. The Ising assumption is again primarily an approximation. However,
small anisotropies are known to cause Ising-like behavior in classical Heisenberg spin glasses [118]
and could partially justify the Ising assumption.
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Figure 5.4: Power spectral density Sθ(ω) of simulated witness-spin noise θ(t) with
spinon-mediated interactions for fourteen selected temperatures. The power spectral
density is nearly scale-invariant at all the temperatures with a temperature-dependent
slope.

temperatures, the spin noise is simulated at each temperature T with the following

procedure: 1000 MC steps are performed for equilibration at T , 10000 MC steps are

performed to record the MC-time sequence θtot(tk, T ) of the total spin θtot = ∑
i Si,

and then the simulation proceeds to the next temperature.3 The average spin

noise θ(tk, T ) is readily obtained as

θ(tk, T ) = 1
N
θtot(tk, T ). (5.4)

The data at each temperature has the length of Γ = 10000 MC step consisting

of the K = 10000 points (0 ≤ tk ≤ (K − 1)∆t), with the MC-time interval of

∆t = 1 MC step. To investigate the spin noise property, the power spectral density

(PSD) Sθ(ωj, T ) is calculated using the formula

Sθ (ωj, T ) = 1
πΓ

∣∣∣∣∣∆t
K−1∑
k=0

e−iωjtkθ (tk, T )
∣∣∣∣∣
2

,
(5.5)

where ωj/(2π) = j/Γ (0 ≤ j ≤ K/2). The frequency resolution is ∆ω/(2π) =

10−4 (MC step)−1. The PSDs from 10 independent MC runs for each of the 128
3Here, I use the symbol θtot to represent the total spin, so that it will not be confused with

the power spectral density symbol S(ω).
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Figure 5.5: (A) Fitting of the power spectral density Sθ(ω, T ) ∝ ω−α(T ) of the witness-
spin noise in the frequency range 10−3 (MC step)−1 ≤ ω/(2π) ≤ 1.6 × 10−1 (MC step)−1

(B) Obtained frequency-power-law exponent α(T ), saturating at ∼ 1 around Tg =
260 mK.

different site-occupation configuration are all averaged. The 3D plot of the obtained

PSD is shown in Fig. 5.4. The PSD takes a nearly scale-invariant form at each

temperature. The PSD slope becomes more steep as the temperature decreases.

The frequency-power-law exponent of the scale-invariant PSD is examined. As

shown in Fig. 5.5A, the fitting of the PSD Sθ(ω, T ) ∝ ω−α(T ) is performed in the

range 1∆ω ≤ ω ≤ 160∆ω. The obtained exponent α(T ) is shown in Fig. 5.5B.

α(T ) grows upon cooling, saturating at ∼ 1 around Tg = 260 mK.

DC susceptibility prediction

The witness-spin DC susceptibility χ(T ) is simulated for three temperature ranges:

from Tini = 10000 mK to Tfin = 2000 mK in steps of ∆T = 200 mK; Tini = 2000 mK,

Tfin = 500 mK, ∆T = 50 mK; and Tini = 500 mK, Tfin = 50 mK, ∆T = 10 mK.

In the same process as the spin noise simulation above, the evolutions of the total

spin θtot = ∑
i Si and its squared value θ2

tot are recorded at each temperature.
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Figure 5.6: (A) Simulated witness-spin DC susceptibility χ(T ) with spinon-mediated
interactions, showing a transition cusp at Tg = 260 mK. (B) Inverse plot 1/χ(T ). The
blue line is the Curie-Weiss fitting of the 2 K ≤ T ≤ 10 K data, which yields a Curie-
Weiss temperature TCW = −1.15 K.

The DC susceptibility per volume in ZnCu3(OH)6Cl2 is obtained using the for-

mula

χ(T ) = µ0(gµB)2ρV
1

kBT

θ2
tot − θtot

2

N .
(5.6)

Here, θ2
tot and θtot represent the average over the 10000 MC steps. µ0, g, µB, ρV , and

kB are the permeability of vacuum, the electron g-factor, the Bohr magneton, the

number density of witness-spins in ZnCu3(OH)6Cl2, and the Boltzmann constant,

respectively. During the 10000 MC steps, the total energy of the system E is also

recorded to calculate the specific heat C(T ) ∝
(
E2 − E

2)
/T 2.

The simulation is repeated for 128 different site-occupation configurations, and

χ(T ) is averaged over them. The obtained witness-spin DC susceptibility χ(T )

in the spinon-mediated interaction simulation is shown in Fig. 5.6A. It shows a

sharp cusp at Tg = 260 mK. As the simulated specific heat does not show any

sharp transition peak, the cusp in the DC susceptibility is not a transition to an

antiferromagnetic order. The Curie-Weiss fitting of the high-temperature regime

2 K ≤ T ≤ 10 K, shown in Fig. 5.6B, yields TCW = −1.15 K.

The model reveals another key point: simple nearest-neighbor-only witness-spin

interactions will not generate the DC susceptibility cusp. With the 33% occupation
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probability, ∼ 10% of the witness-spins are isolated without any nearest-neighbor

witness-spins. They continue to behave paramagnetically down to low temperatures

and generate diverging DC susceptibility.

In summary, witness-spins with the spinon-mediated interactions, simulated

with the Hamiltonian in Eq. 5.3 (AχNN = 1.5 K, R0 = 0.44d, and 33% site-

occupation), have the following properties. The spin noise PSD takes a scale-

invariant form. The PSD slope grows upon cooling, saturating around Tg to

the frequency power law ω−1. DC susceptibility shows a cusp at Tg = 260 mK,

with TCW ∼ −1.15 K. The transition at Tg is not an antiferromagnetic ordering

transition, as a sharp peak is absent in the specific heat, and is attributable to

a spin glass transition [35, 36].

5.3 Experiment

To test the spinon-mediated interaction predictions, which derive from the hypoth-

esis that the kagome layer is in a quantum spin liquid, I experimentally measured

DC susceptibility and spin noise of ZnCu3(OH)6Cl2.

5.3.1 Sample preparation

ZnCu3(OH)6Cl2 single crystals were synthesized by a recrystallization method as

described in Ref. [119].4 Powder of ZnCl2, CuO, and H2O was mixed with a ratio of

2.015 g : 0.235 g : 4.5 mL in a quartz tube, which was sealed under vacuum. The

quartz tube was laid horizontally in a three-zone gradient furnace, with the hot

and cold ends set at 180 ◦C and 160 ◦C, respectively. After 3 months, mm-scale

single crystals were obtained.

Figure 5.7A shows photos of three ZnCu3(OH)6Cl2 single crystals from the

same growth. I have measured two c-axis samples (Sample 1 and 2) and one a-axis

sample (Sample 3). Sample 1 was obtained by polishing down Sample 1′ so that it

fits into the astatic-coil spectrometer (Fig. 3.2C) for susceptibility measurements.
4ZnCu3(OH)6Cl2 single crystals synthesized by Pascal Puphal were used in the experiment. I

performed the same synthesis with the support of Pascal Puphal, but the crystals I synthesized
were smaller at 1 mm scale due to limited waiting time for recrystallization.



118 5.3. Experiment

0 100 200 300
Temperature (K)

0

1000

2000

3000

1/
χ

TCW»−280 K

H || c = 0.1 T

0 5 100

400

800

TCW»−1 K

Sample 2Sample 1

Sample 1’

ZnCu3(OH)6Cl2 single crystals
Sample 3

c c a

A B

Figure 5.7: (A) Photos of three ZnCu3(OH)6Cl2 single crystals. Sample 1 is obtained
by polishing down Sample 1′. The c-axis of Sample 1 and Sample 2 is identified to be
the long direction of the bar shape. The Laue diffraction image of Sample 1′ shows clear
Bragg peaks. (B) DC susceptibility of Sample 1’ measured by an MPMS. The solid lines
are Curie-Weiss fitting results by χ = χ0 + CCurie

T −TCW
. Fitting of a high-temperature regime

150 K ≤ T ≤ 320 K (blue) yields TCW = −280 K, CCurie = 0.165 K, and χ0 = −5 × 10−6.
Fitting of a low-temperature regime 2 K ≤ T ≤ 6 K (orange) range yields TCW = −1.1 K,
CCurie = 0.013 K, and χ0 = 4.2 × 10−4.

The stoichiometry of Zn/Cu ratio was found to be 0.97:3.03 (±0.02) in Sample 1′

from inductively coupled plasma mass spectrometry.5 The lattice structure was

confirmed by x-ray Laue diffraction in Sample 1′ that shows clear Bragg peaks, as

shown in Fig. 5.7A. A single crystal x-ray diffraction measurement indicates that

32.5% of the Zn2+ sites and 10.8% of the Cu2+ sites are inter-substituted, which

is comparable to the value obtained by the past neutron diffraction studies [91–

93].6 Figure 5.7B shows the DC susceptibility of Sample 1’ measured in an MPMS

(Quantum Design). Fitting by the Curie-Weiss law

χ = χ0 + CCurie

T − TCW
(5.7)

in the temperature range 2 K ≤ T ≤ 6 K gives TCW = −1.1 K and CCurie =

0.013 K, corresponding to S = 1/2 at ∼ 33% of the Zn sites. This number is
5The inductively coupled plasma mass spectrometry was performed by Pascal Puphal.
6The single crystal x-ray diffraction was performed by Jürgen Nuss.



5. Spinon-Mediated Witness-Spin Interactions in ZnCu3(OH)6Cl2 119

comparable to the past DC susceptibility studies [96, 97], and is also consistent

with the aforementioned x-ray/neutron diffraction studies.

5.3.2 Spin noise measurement and long-term evolution study

The spin noise measurements were performed using a single coil connected to the

SQ1200 SQUID (Star Cryoelectronics) in the dilution refrigerator. The design

of the SQUID spin noise spectrometer is detailed in Chapter 3, with the circuit

diagram shown in Fig. 3.4A. Here, I only summarize the important parameters:

the pickup coil turns Np = 19, the pickup coil inductance Lp = 0.56 µH, the input

coil inductance Li = 1.30 µH, the inverse input-coil-SQUID mutual inductance

1/Mi = 0.13 µA/Φ0, and the SQUID transfer function gSQUID = 10.1 V/Φ0. Three

0.2 mm-diameter silver wires were glued to the ZnCu3(OH)6Cl2 single crystal for

thermalization.

The spin noise data of ZnCu3(OH)6Cl2 (Sample 1) consists of SQUID output

voltage recordings of a duration 1000 s and a sampling rate 20 kSa/s (a time

interval of 50 µs), at temperatures from 150 mK to 400 mK in steps of 10 mK.

The SQUID output voltage first went through a 5 kHz, 4-pole low-pass filter, and

then an SR560 preamplifier with an appropriate gain and 0.03 Hz 6 dB/oct high-

pass and 30 kHz 6 dB/oct low-pass filters, before was recorded by a Moku:Pro

analog-to-digital converter. The temperature was controlled by a heater with a

stability of 0.5 mK, and the sample was thermalized for at least 20 mins at the

target temperature before the measurements. The SQUID background noise was

measured for a free-standing coil without a sample.

The recorded SQUID output voltage V (t, T ) at different temperatures is con-

verted into the flux noise Φ(t, T ) at the pickup coil and the magnetization noise

M(t, T ) using Eqs. 2.102 and 2.103. Figure 5.8 shows the measured ZnCu3(OH)6Cl2

flux noise Φ(t, T ) at 260 mK for a 10-second duration, after filtering out the

high-frequency components below 0.05 Hz and above 100 Hz (Appendix B). The
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Figure 5.8: Measured ZnCu3(OH)6Cl2 flux noise Φ(t, T ) at 260 mK shown for a 10-
second duration (light green dots). The frequency components below 0.05 Hz and above
100 Hz are filtered out. For visual clarity, the plotted points are down-sampled to every
5 ms. The box-car average for every 50 ms is overlayed (dark green), which is highly
distinct from the identically averaged signal of the empty coil (gray). The corresponding
magnetization noise M(t, T ) is shown on the right-hand axis.

ZnCu3(OH)6Cl2 noise is clearly distinct from the empty-coil background, and ex-

hibits slow fluctuations on a timescale of seconds. The ∼ 20 mΦ0 flux noise

fluctuation here corresponds to the ∼ 2 pT/µ0 magnetization fluctuation.

In the same experimental setup, a long-term evolution of the spin state in

ZnCu3(OH)6Cl2 was explored. Sample 1 was first thermalized for 1 hour at 400 mK,

then the temperature was rapidly dropped to a lower temperature Tlow, taking

only a short time of ∼ 3 minutes. After 20 mins of thermalization at Tlow, the

SQUID output voltage was recorded for 105 s (∼ 28 hours) with 1 kSa/s. Separate

measurements were performed for five Tlow from 150 mK to 350 mK in steps of

50 mK. The SR560 preamplifier filter was set to 3 kHz 12 dB/oct low-pass and

no high-pass so that the DC component evolution of the SQUID output voltage

could be tracked. The result of this long-term spin noise measurement is later

analyzed in Fig. 5.13.

5.3.3 High-precision sub-microTesla DC susceptibility mea-
surements

The DC susceptibility measurements were performed using an astatic coil connected

to the SP550 SQUID (Quantum Design) in the dilution refrigerator. The design of

the SQUID susceptometer is detailed in Chapter 3, with the circuit diagram shown
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Figure 5.9: (A) Measured DC susceptibility χ(T ) of ZnCu3(OH)6Cl2 in zero-field
cooling condition, showing a cusp at 260 mK. Tiny field of 50 nT order was used. (B)
Inverse DC susceptibility 1/χ(T ). The blue curve represents the extension of the Curie-
Weiss curve obtained by a fitting in a higher-temperature range 2 K ≤ T ≤ 6 K. Below
1 K, the measured susceptibility starts showing a more complex temperature dependence.

in Fig. 3.4B. Here, I only summarize the important parameters: the pickup coil

turns Np = 8, the pickup coil inductance Lp = 0.71 µH, the input coil inductance

Li = 1.74 µH, the inverse input-coil-SQUID mutual inductance 1/Mi = 0.19 µA/Φ0,

the SQUID transfer function gSQUID = 0.73 V/Φ0, and the field coil circuit resis-

tance 222 kΩ. The calibrated astatic coil imbalance was about 10% for the specific

astatic coil used in this experiment. A 0.1 mm-diameter silver wire was glued to

the ZnCu3(OH)6Cl2 single crystal for thermalization.

The measurements were performed for Sample 1 from 100 mK to 400 mK in

steps of 10 mK, from 400 mK to 1000 mK in steps of 50 mK, and 1000 mK to

3000 mK in steps of 100 mK. The sample was thermalized for at least 20 minutes

at the target temperature before the measurements. At each temperature, the

SQUID output voltage was recorded while a DC field µ0H was swept over 0 nT

→ −55 nT → 55 nT → −55 nT → 0 nT in steps of 1.1 nT (zero-field cooling).

The voltage at each field V (H;T ) was converted to the magnetization M(H;T )

using Eq. 2.103, and a fitting M(H;T ) = χ(T )H yields the DC susceptibility χ(T ).

The coil imbalance contribution is subtracted so that the measured χ(T ) becomes

consistent with the MPMS result (Fig. 5.7B) at the overlapping temperatures.
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The measured DC susceptibility is shown in Fig. 5.9A. The DC susceptibility

shows a clear cusp at T ∗ = 260 mK. A Curie-Weiss fitting result in the higher tem-

perature regime 2 K ≤ T ≤ 6 K naturally captures the DC susceptibility behavior

down to 1 K. However, the temperature dependence becomes more complex below

1 K, as shown more clearly in the inverse susceptibility in Fig. 5.9B.

5.4 Experimental Analysis

5.4.1 Spin noise analysis
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Figure 5.10: (A) Measured squared flux noise Φ2(t, T ) of ZnCu3(OH)6Cl2 shown for
a one-second duration at six selected temperatures. For visual clarity, Φ(t, T ) is down
sampled so that the plotted time interval is 500 µs. The frequency components below
0.05 Hz and above 100 Hz are filtered out. (B) Distribution of flux noise Φ(t, T ) at
the corresponding temperatures, each of which follows a Gaussian distribution with a
temperature-varying width.

The measured ZnCu3(OH)6Cl2 spin noise exhibits a clear temperature depen-

dence. Fig. 5.10A shows the squared flux noise Φ2(t, T ) at six selected temperatures.

The noise at 400 mK is small and is dominated by the background SQUID noise.

The intense noise from ZnCu3(OH)6Cl2 rapidly grows upon cooling, maximizing at
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Figure 5.11: Power spectral density SΦ (ωj , T ) of the measured ZnCu3(OH)6Cl2 flux
noise Φ(tk, T ) from 150 mK to 350 mK. The empty-coil background contribution is
subtracted. (A) The contour plot. The power spectral density shows intense low-
frequency fluctuations at least down to ω/(2π) = 0.1 Hz. (B) The 3D plot. The power
spectral density is scale-invariant with a temperature-dependent slope.

250 mK, then gently decreases. Such temperature dependence is also noticeable in

the flux noise distribution histograms shown in Fig. 5.10B. The distribution rapidly

broadens down to 250 mK, and then slowly narrows below that temperature. The

distribution is well fit by a Gaussian curve at all the temperatures.

Next, the power spectral density (PSD) SΦ(ωj, T ) is calculated to investigate

the noise property in more detail. As in the Ca10Cr7O28 noise data in Chapter 4,
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Figure 5.12: (A) Fitting of the ZnCu3(OH)6Cl2 flux noise power spectral density
SΦ (ω, T ) ∝ ω−α(T ) in the range 0.1 Hz ≤ ω/(2π) ≤ 100 Hz. The empty-coil background
is subtracted. The error bars are given by the standard error of segments-averaging. The
corresponding value of magnetization noise power spectral density SM (ωj , T ) is shown
on the right-hand axis. (B) The obtained frequency-power-law exponent α(T ), which
shows a clear temperature dependence change around T ∗ = 260 mK. (C) Variance σ2

Φ(T )
of the measured ZnCu3(OH)6Cl2 flux noise Φ(tk, T ), calculated after filtering out the
fluctuations below 0.05 Hz and above 100 Hz. The background contribution is subtracted.
The variance peaks at T ∗ ∼ 260 mK and diminishes approximately as T 1.2 (blue line).
The corresponding value of magnetization noise σ2

M (T ) is shown on the right-hand axis.

each time sequence of the flux noise Φ(tk, T ) has the total duration of Γ = 1000 s

with the time interval of ∆t = 50 µs. Hence, there are K = 2 × 107 data points

(0 ≤ tk ≤ (K − 1)∆t). The PSD is calculated from the formula

SΦ (ωj, T ) = 1
πΓ

∣∣∣∣∣∆t
K−1∑
k=0

e−iωjtkΦ (tk, T )
∣∣∣∣∣
2

,
(5.8)

where ωj/(2π) = j/Γ (0 ≤ j ≤ K/2). PSDs with the resolution of ∆ω/(2π) =

10−1, 100, 101 Hz are calculated from the P = 102, 103, 104 split segments, respec-

tively, as detailed in Appendix B. The PSD shows intense low-frequency fluctua-

tions down to at least ω/(2π) ∼ 0.1 Hz, as shown in the contour plot in Fig. 5.11A.

The PSD is scale-invariant with a temperature-dependent slope, as is visible in
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the 3D plot in Fig. 5.11B.

There is a clear transition at T ∗ = 260 mK in the PSD slope. Fitting of the scale-

invariant PSD SΦ (ω, T ) ∝ ω−α(T ) in the range 0.1 Hz ≤ ω/(2π) ≤ 100 Hz is shown

in Fig. 5.12A. The obtained frequency power-law exponent α(T ) in Fig. 5.12B

shows a transition around T ∗ = 260 mK. From a value as small as ∼ 0.4 at high

temperature, α(T ) rapidly grows to a value close to 1.0 upon cooling. Below ∼ T ∗,

α(T ) stabilizes and gently approaches 1.0. The transition at T ∗ = 260 mK is

also clearly visible in the noise power. The variance σ2
M(T ) is calculated from the

noise data after filtering out the fluctuations below 0.05 Hz and above 100 Hz

(Appendix B).

σ2
Φ(T ) = 1

K

K−1∑
k=0

Φ2 (tk, T ) −
(

1
K

K−1∑
k=0

Φ (tk, T )
)2

.
(5.9)

The variance is plotted in Fig. 5.12C after subtracting the background contri-

bution. The variance rapidly grows down to ∼ T ∗, below which it diminishes

approximately as T 1.2.

5.4.2 Discovery of witness-spin aging at T < T ∗

To explore a long-term evolution of the spin state in ZnCu3(OH)6Cl2, I analyze

the 105 s spin noise data. As explained in Section 5.3.2, after the sample was ther-

malized for 1 hour at a high temperature 400 mK, the temperature was suddenly

dropped to Tlow in ∼ 3 mins, and then the spin noise was measured. Firstly, the

variance is calculated for every 1000 s segments, after the frequency components

above 0.1 Hz are filtered out. As shown in Fig. 5.13A, the variance has an extra

contribution in the first 104 s that disappears over time. This long-term evolution

of the variance is observed from 150 mK to 250 mK, the temperatures below

T ∗ = 260 mK. At high temperatures T > T ∗, such an evolution of variance is

not visible. Next, the time evolution of the DC component of the flux, averaged

for every 100 s, is plotted in Fig. 5.13B. The DC component can be attributed

to the response of ZnCu3(OH)6Cl2 to a small fixed DC magnetic field, which is

trapped in the shielded environment of the spin noise spectrometer. Below T ∗,
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Figure 5.13: (A) Time evolution of the flux noise variance σ2
Φ(T ) after the temperature

is suddenly dropped from a thermalized condition at 400 mK. Each data point is
calculated from every 1000 s time-sequence segments after the frequency components
above 0.1 Hz are filtered out. Below T ∗ = 260 mK, there is an extra variance contribution
in the first 10000 s that disappears over time. At high temperatures T > T ∗, such a
contribution is absent. (B) Time evolution of the average flux after the temperature is
suddenly dropped from a thermalized condition at 400 mK. The average flux, attributed
to the response of ZnCu3(OH)6Cl2 to a small trapped DC field, shows a logarithmic
evolution (gray dashed line) below T ∗. No such evolution exists at high temperatures
T > T ∗. Weak oscillations of the signal observed at all temperatures are likely due to
small temperature fluctuations.

there is a clear long-term evolution of the DC component lasting for 105 s. The

evolution is logarithmic and is different from an exponential evolution expected for

a typical thermalization process. At high temperatures T > T ∗, such a logarithmic

long-term evolution is absent.

Thus, the spin state of ZnCu3(OH)6Cl2 ‘ages’ as one waits for a long time at

a fixed temperature. The aging evolution continues on the timescale of at least

105 s, occurring only below the transition temperature T ∗. Such aging evolution of

a spin-state is a crucial feature of a spin glass [120, 121], where a non-equilibrium

spin state shows a long-lasting slow relaxation process. The observation of aging
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in ZnCu3(OH)6Cl2 indicates that the witness-spins are in a glassy state at T < T ∗.

5.4.3 Reproducibility of ZnCu3(OH)6Cl2 spin noise
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Figure 5.14: Comparison of spin noise from three ZnCu3(OH)6Cl2 samples and an
empty coil. (A) Frequency-power-law exponent α(T ) obtained by fitting the flux noise
power spectral density SΦ (ω, T ) ∝ ω−α(T ). All three samples show a similar temperature
dependence with a behavior change around T ∗ = 260 mK. The fitting range is 0.1 Hz
≤ ω/(2π) ≤ 100 Hz for Sample 1 and 2. The narrower range 0.1 Hz ≤ ω/(2π) ≤ 10 Hz
is used for Sample 3 as an extra Johnson noise contribution from thermalization wires
is observed at high frequency. (B) Flux noise variance σ2

Φ(T ). All three samples show a
similar temperature dependence with a peak around T ∗ = 260 mK. The variance level of
the empty coil, which is subtracted from the ZnCu3(OH)6Cl2 variances, is indicated by
a block dotted line.

The reproducibility of the spin noise phenomena is examined by repeating

the spin noise measurements in the three ZnCu3(OH)6Cl2 samples in Fig. 5.7A.

Sample 1 and Sample 2 were measured for c-axis direction while Sample 3 for a-

axis. The spin noise measurements of Sample 2 and Sample 3 were performed with

the same procedure as the Sample 1 measurement described in Section 5.3.2. The

frequency-power-law exponent α(T ) obtained by fitting the scale-invariant PSD is

shown in Fig. 5.14A. In all three samples, α(T ) shows a rapid growth to ∼ 1.0 upon

cooling to T ∗ = 260 mK, below which the change is only gradual. The flux noise

variance σ2
Φ(T ) in Fig. 5.14B shows a comparable temperature dependence for all

three samples, with a variance peak around T ∗ = 260 mK. The smaller variance

magnitude of Sample 3 can be attributed to the short sample length, which did
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not fill up the full pickup-coil length. After scaling the variance of Sample 3 by

a simple constant, the variance of all three samples overlap. Thus, the spin noise

phenomena in ZnCu3(OH)6Cl2 are confirmed to be robust. I note that whether the

spin noise is isotropic or not requires more careful experimental investigation.

5.5 Discussion

The experimental measurement in ZnCu3(OH)6Cl2 observes a clear transition at

T ∗ = 260 mK in the DC susceptibility, the spin noise PSD, and the aging evolution.7

In ZnCu3(OH)6Cl2, the magnetic contribution of kagome layer is negligible

compared to that of witness-spins at low temperature, as evidenced by the decrease

of the local kagome susceptibility in nuclear magnetic resonance [101–105]. The low-

temperature magnetic behavior in the experiment is naturally attributable to the

witness-spins, and therefore can be directly compared to the witness-spin simulation

with the spinon-mediated interactions. In both experiment and simulation, the

DC susceptibility χ(T ) exhibits the sharp transition cusp at T ∗ = 260 mK freezing

the ∼ 33% spin-1/2 contributions altogether (Fig. 5.15A). The Curie-Weiss fitting

of the susceptibility above 2 K yields TCW = −1.1 K. The frequency power-law

exponent α(T ) of the scale-invariant PSD S (ω, T ) ∝ ω−α(T ) rapidly approaches ∼ 1

upon cooling to ∼ T ∗, below which the change becomes gradual (Fig. 5.15B). The

antiferromagnetic correlation observed in neutron scattering [98] and the antiferro-

magnetic interaction between nearest-neighbor witness-spins derived in the spinon-

mediated interaction are in agreement. Thus, all my experimental observations

in ZnCu3(OH)6Cl2 are consistent with the spinon-mediated interactions among

witness-spins.

7It is striking that the transition at 260 mK has not been detected for twenty years in
ZnCu3(OH)6Cl2. Not many studies have probed low temperatures below 300 mK, likely due
to the strong interaction J ∼ 190 K in the kagome plane. DC susceptibility measurement in
Ref. [95] did not observe a cusp down to 100 mK, which could be because a relatively large field
of 0.1 T may have suppressed the cusp as in a spin glass FexMn1-xTiO3 [122]. Specific heat
appears to show a slope change around 300 mK [108,110], but the change is smooth and has not
attracted much attention.
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Figure 5.15: Comparison between the ZnCu3(OH)6Cl2 measurement and the witness-
spin simulation with spinon-mediated interactions. (A) DC susceptibility χ(T ) showing
a cusp at T ∗ = 260 mK. (B) Frequency-power-law exponent α(T ) of the scale-invariant
power spectral density S (ω, T ) ∝ ω−α(T ). The exponent rapidly approaches ∼ 1 upon
cooling to ∼ T ∗, below which change of α(T ) becomes gradual.

5.5.1 Next developments in simulation and experiment

In the simulation, the increase of α(T ) upon cooling is slower. This difference

could be resolved by increasing the total Monte Carlo steps that will extend the

frequency range of the simulated PSD. The simulated PSD at high temperatures,

shown in Fig. 5.4B, shows a gradual slope change at lower frequencies.

To further test the validity of the spinon-mediated interaction model, it would

be beneficial to study compounds where the same model applies. For example, Cu-

doped Herbertsmithite ZnxCu4-x(OH)6Cl2 (x = 0.8, 0.9) with more Cu on the Zn

layer [119, 123] and Zn-Barlowite ZnCu3(OH)6FBr [124] that is discussed to have

less Cu/Zn substitution than Herbertsmithite [94], are expected to exhibit the same

physics. If the spinon-mediation scenario is correct, the witness-spin simulation

with modified parameters will continue to be comparable to the experiment for

these compounds.

Nevertheless, the experimental observations in ZnCu3(OH)6Cl2 are overall con-

sistent with the spinon-mediated interactions among the witness-spins, proposing

the underlying quantum spin liquid state within the kagome layer. The predicted
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spinon-mediated interactions are based on a gapped Z2[0,π]β QSL, a leading con-

tender for the S = 1/2 kagome Heisenberg model, with the interaction decay length

R0 = 0.44d. The value of R0, chosen by comparison with the experiment, could

be used to determine the quantitative properties of the presumed Z2[0,π]β QSL

in the kagome layer. This successful study of the ZnCu3(OH)6Cl2 witness-spin

noise motivates general study on a quantum spin liquid state by exploiting witness-

spins, which are naturally or artificially embedded nearby. It also encourages the

future development of a spin noise spectrometer to perform local measurements,

which will allow a detailed look into the different locations with varying witness-

spin densities. Thus, my successful experimental discoveries of the spin noise

in Ca10Cr7O28 (Chapter 4) and ZnCu3(OH)6Cl2 demonstrate that the spin noise

approach to fingerprinting spin liquid states, either by direct probing or by witness-

spin probing, is a promising research avenue. The spin noise study of many more

spin liquid compounds, the further development of the spin noise measurement

technique, and last but not least, the analytical and computational spin noise

predictions on various spin liquid states are now strongly encouraged.
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A
Derivations of equations

A.1 Relaxation time distribution for power-law
AC susceptibility

Consider a spin ensemble where the relaxation time is distributed as Eq. 2.18. The

AC susceptibility of the system will be

χ′(ω) = χDC
∫ τmax

τmin
dτ aτα−1 1

1 + ω2τ 2 = χDCω−αa
∫ ωτmax

ωτmin
dx xα−1

1 + x2 .
(A.1)

χ′′(ω) = χDC
∫ τmax

τmin
dτ aτα−1 ωτ

1 + ω2τ 2 = χDCω−αa
∫ ωτmax

ωτmin
dx xα

1 + x2 .
(A.2)

The power-law dependences in Eqs. 2.16 and 2.17 are thus obtained, as the ω-

dependence of the integral part is no stronger than logarithmic. In the frequency

range τmin ≪ 1/ω ≪ τmax, for different values of α,

∫ ωτmax

ωτmin
dx xα−1

1 + x2 =

− log(ωτmin) (α = 0)
π
2

1
sin(απ/2) (0 < α ≤ 1).

(A.3)

∫ ωτmax

ωτmin
dx xα

1 + x2 =


π
2

1
sin((α+1)π/2) (0 ≤ α < 1)

log(ωτmax) (α = 1).
(A.4)
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A.2 AC susceptibility from Bloch equation

I formally solve the following Bloch equations to derive the AC susceptibility when

there are precessional dynamics due to a DC field and relaxational dynamics.

dM

dt
= µ0γM × H − M − χDCH

τ ,
(A.5)

H = (Hx, 0, Hz(t)) = Re[(Hx, 0, H0e
iω0t)], (A.6)

where γ = −2µB/ℏ for an electron spin, and the oscillating field is perturbative

H0 → 0. For each Fourier component, the Bloch equation can be expanded as

iωMx(ω) = µ0γH0My(ω − ω0) − 1
τ
Mx(ω) + χDC

τ
Hxδ(ω), (A.7)

iωMy(ω) = −µ0γH0Mx(ω − ω0) + µ0γHxMz(ω) − 1
τ
My(ω), (A.8)

iωMz(ω) = −µ0γHxMy(ω) − 1
τ
Mz(ω) + χDC

τ
H0δ(ω − ω0). (A.9)

One can simplify the equation for Mz(ω) by substituting Mx(ω) and My(ω).

Mx(ω) = 1
iω + 1/τ

χDC

τ
Hxδ(ω) + O(H0), (A.10)

My(ω0) = 1
iω0 + 1/τ

(−µ0γH0Mx(0) + µ0γHxMz(ω0)) (A.11)

= −χDCµ0γHxH0δ(0)
iω0 + 1/τ

+ µ0γHx

iω0 + 1/τ
Mz(ω0) + O(H2

0 ), (A.12)

Mz(ω0) = 1
iω0 + 1/τ

(
−µ0γHxMy(ω0) + χDC

τ
H0δ(0)

)
(A.13)

= χDC 1
iω0 + 1/τ

(
(µ0γHx)2

iω0 + 1/τ
+ 1
τ

)
H0δ(0) − (µ0γHx)2

(iω0 + 1/τ)2Mz(ω0) + O(H2
0 ).

(A.14)

Therefore,

Mz(ω0) = 1
1 + (µ0γHx)2

(iω0+1/τ)2

χDC 1
iω0 + 1/τ

(
(µ0γHx)2

iω0 + 1/τ
+ 1
τ

)
H0δ(0) + O(H2

0 ), (A.15)

χ(ω0) = Mz(ω0)
Hz(ω0)

= 1
1 + (µ0γHx)2

(iω0+1/τ)2

χDC 1
iω0 + 1/τ

(
(µ0γHx)2

iω0 + 1/τ
+ 1
τ

)
.

(A.16)
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Let us use ωE = µ0|γ|Hx and change the symbol ω0 to ω to express general frequency.

The expression can be simplified as follows:

χ(ω) = χDCω
2
E + (iω + 1/τ) 1

τ

(iω + 1/τ)2 + ω2
E

(A.17)

= χDC ω2
Eτ

2 + (1 + iωτ)
(1 + iωτ)2 + ω2

Eτ
2

(A.18)

= χDC

2

(
1 − iωEτ

1 + i(ω − ωE)τ
+ 1 + iωEτ

1 + i(ω + ωE)τ

)
(A.19)

= χDC

2

(
1 − ωEτ(ω − ωE)τ − iωτ

1 + (ω − ωE)2τ 2
+ 1 + ωEτ(ω + ωE)τ − iωτ

1 + (ω + ωE)2τ 2

)
.

(A.20)

The real and imaginary part of the AC susceptibility will then be

Reχ(ω) = χDC

2

(
1 − ωEτ(ω − ωE)τ
1 + (ω − ωE)2τ 2

+ 1 + ωEτ(ω + ωE)τ
1 + (ω + ωE)2τ 2

)
,

(A.21)

Imχ(ω) = χDC

2

(
ωτ

1 + (ω − ωE)2τ 2
+ ωτ

1 + (ω + ωE)2τ 2

)
.

(A.22)

A.3 Spin noise spectrum from Bloch equation

I formally solve the following Bloch equation to derive the power spectral density

of magnetization noise when there are precessional dynamics due to a DC field

and relaxational dynamics.

dM

dt
= µ0γM × H − M − χDCH

τ
+ ξ, (A.23)

H = (Hx, 0, 0), (A.24)

ξ =
√

2σ2
M

τ
(ξx, ξy, ξz). (A.25)

For each Fourier component, the Bloch equation can be expanded as

iωMx(ω) = −1
τ
Mx(ω) + χDC

τ
Hxδ(ω) +

√
2σ2

M

τ
ξx(ω), (A.26)

iωMy(ω) = +µ0γHxMz(ω) − 1
τ
My(ω) +

√
2σ2

M

τ
ξy(ω), (A.27)

iωMz(ω) = −µ0γHxMy(ω) − 1
τ
Mz(ω) +

√
2σ2

M

τ
ξz(ω). (A.28)
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One can simplify the equation for Mz(ω) by substituting My(ω).

My(ω) = τ

1 + iωτ

µ0γHxMz(ω) +
√

2σ2
M

τ
ξy(ω)


,

(A.29)

Mz(ω) = τ

1 + iωτ

 τ

1 + iωτ
(−µ0γHx)2Mz(ω) − τ

1 + iωτ
µ0γHx

√
2σ2

M

τ
ξy(ω) +

√
2σ2

M

τ
ξz(ω)


(A.30)

=
(

τ

1 + iωτ

)2
−(µ0γHx)2Mz(ω) − µ0γHx

√
2σ2

M

τ
ξy(ω) + 1 + iωτ

τ

√
2σ2

M

τ
ξz(ω)


.

(A.31)

Therefore,

Mz(ω) =
−µ0γHx

√
2σ2

M

τ
ξy + 1+iωτ

τ

√
2σ2

M

τ
ξz

(1+iωτ)2

τ2 + (µ0γHx)2
(A.32)

=
ωEτ

2
√

2σ2
M

τ
ξy + (1 + iωτ)τ

√
2σ2

M

τ
ξz

(1 + iωτ)2 + ω2
Eτ

2
(A.33)

= 1
2

−i
√

2σ2
Mτξy +

√
2σ2

Mτξz

1 + i(ω − ωE)τ
+
i
√

2σ2
Mτξy +

√
2σ2

Mτξz

1 + i(ω + ωE)τ


,

(A.34)

SMz(ω) =
σ2

Mz

π

(
τ

1 + (ω − ωE)2τ 2
+ τ

1 + (ω + ωE)2τ 2

)
.

(A.35)

A.4 Derivation of fluctuation-dissipation theorem

For a canonical ensemble, the population probability of a microstate |m⟩ with

energy ℏωm is pm = 1
Z
e−ℏωm/(kBT ), where Z is the partition function. Define Mmn =

M∗
nm = ⟨m| M̂ |n⟩ and ωmn = −ωnm = ωm − ωn. The expression of power spectral

density in Eq. 2.50 is expanded as
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SM(ω) = 2
π

∫ ∞

0
dt cos(ωt)

〈1
2
{
M̂(t), M̂(0)

}〉
(A.36)

= 2
π

∫ ∞

0
dt cos(ωt)1

2
∑
mn

pm

(
eiωmntMmnMnm + eiωnmtMmnMnm

)
(A.37)

= 2
π

∫ ∞

0
dt cos(ωt)

∑
mn

pm cos(ωmnt)|Mmn|2 (A.38)

= 1
π

∫ ∞

0
dt

∑
mn

pm (cos(ωt− ωmnt) + cos(ωt+ ωmnt)) |Mmn|2 (A.39)

= 1
π

∫ ∞

0
dt

∑
mn

(pm + pn) cos(ωt− ωmnt)|Mmn|2 (A.40)

= 1
π

∫ ∞

0
dt

∑
mn

pn(1 + e−ℏωmn/(kBT )) cos(ωt− ωmnt)|Mmn|2 (A.41)

=
∑
mn

pn(1 + e−ℏωmn/(kBT ))δ(ω − ωmn)|Mmn|2 (A.42)

= (1 + e−ℏω/(kBT ))
∑
mn

pnδ(ω − ωmn)|Mmn|2. (A.43)

The relation
∫∞

0 dt cos(ωt−ωmnt) = πδ(ω−ωmn) is used. In the same manner, the

expression of imaginary susceptibility in Eq. 2.52 is expanded as

χ′′(ω) = V µ0
i

ℏ

∫ ∞

0
dt sin(ωt)

〈[
M̂(t), M̂(0)

]〉
(A.44)

= V µ0
i

ℏ

∫ ∞

0
dt sin(ωt)

∑
mn

pm

(
eiωmntMmnMnm − eiωnmtMmnMnm

)
(A.45)

= −2V µ0
1
ℏ

∫ ∞

0
dt sin(ωt)

∑
mn

pm sin(ωmnt)|Mmn|2 (A.46)

= −V µ0
1
ℏ

∫ ∞

0
dt

∑
mn

pm (cos(ωt− ωmnt) − cos(ωt+ ωmnt)) |Mmn|2 (A.47)

= −V µ0
1
ℏ

∫ ∞

0
dt

∑
mn

(pm − pn) cos(ωt− ωmnt)|Mmn|2 (A.48)

= V µ0
1
ℏ

∫ ∞

0
dt

∑
mn

pn(1 − e−ℏωmn/(kBT )) cos(ωt− ωmnt)|Mmn|2 (A.49)

= V µ0
π

ℏ
∑
mn

pn(1 − e−ℏωmn/(kBT ))δ(ω − ωmn)|Mmn|2 (A.50)

= V µ0
π

ℏ
(1 − e−ℏω/(kBT ))

∑
mn

pnδ(ω − ωmn)|Mmn|2. (A.51)

The comparison of these two expressions leads to the fluctuation-dissipation theo-

rem

χ′′(ω) = V µ0
π

ℏ
tanh

(
ℏω

2kBT

)
SM(ω). (A.52)
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Note that the derived expressions of power spectral density and AC susceptibility

based on microstates explicitly reveal the contribution of precessional dynamics at

frequencies corresponding to energy excitation.



B
Technical details of spiral spin liquid

simulation

B.1 Correspondence between Monte Carlo step
and actual time

The correspondence between the Monte Carlo (MC) time and the actual time is

determined by comparing the spin-flip rate in the simulation and the experimental

observation. Figure B.1 shows the rate of spin flips at each temperature in the

spiral spin liquid simulation. As a flip by a tiny angle causes little change to a

spin state, spin flips by an angle larger than 5 degrees are only considered. The

rate is calculated by counting such spin flips in the first 5 × 104 MC steps of the

L = 40 system evolution in equilibrium. The spin-flip rate of 0.1 (MC step)−1

at T ∼ 0.15|J1| indicates the elementary local relaxation process at the timescale

of approximately τelem = 10 (MC step) in the simulation. Ref. [78] reports the

AC susceptibility measurement of Ca10Cr7O28 in the form of a Cole-Cole plot in

the frequency range from 100 Hz to 20 kHz. Although there is an appreciable

deviation at the low frequency, the high-frequency data forms a semicircle with

the Cole-Cole parameter 0.05−0.11. This indicates a relatively narrow distribution

of relaxation times [64] at the high frequency, say ω/(2π) ∼ 10 kHz. From this

measurement, the elementary relaxation process in Ca10Cr7O28 can be estimated
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Figure B.1: The rate of spin flips by an angle larger than 5 degrees at each temperature
in the spiral spin liquid simulation. This is calculated by counting spin flips in the first
5 × 104 MC steps of the L = 40 system evolution in equilibrium. The spin-flip rate of
0.1 (MC step)−1 at T ∼ 0.15|J1| indicates the elementary local relaxation process at the
timescale of approximately τelem = 10 (MC step).

to be τelem ∼ 10 µs. By comparing τelem in the simulation and the experiment,

the relation 1 MC step = 1 µs is obtained.

B.2 Estimate of magnetization noise from spin
noise

The magnitude of the magnetization noise corresponding to the average-spin noise

in the simulation is estimated as follows. Consider N spins of a magnitude s in a

volume V . For large N , the fluctuation amplitude of the average spin ∆θ̄ and the

magnetization µ0∆M in unit of tesla will approximately follow

∆θ̄ ∝ s
√
N

N
= s√

N ,
(B.1)

µ0∆M ∝ µ0 (2µB) s
√
N

V
= 2µ0µB

N

V
∆θ̄. (B.2)
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The simulation setup with N sim and ssim can be related to the experimental sample

with N exp, sexp, and V exp as

∆θ̄exp = sexp

ssim

√
N sim

√
N exp

∆θ̄sim, (B.3)

µ0∆M exp = 2µ0µB
N exp

V exp ∆θ̄exp = 2µ0µB
sexp

ssim

√
N simN exp

V exp ∆θ̄sim. (B.4)

Let us estimate the noise in a Ca10Cr7O28 sample of a volume V exp = 2 mm3. The

number density of spin-1/2 Cr5+ is 9.4 nm−3 i.e. the density of bundled spin-3/2

is 3.1 nm−3, so that N exp = 6.2 × 1018 and sexp = 3/2. The conversion factor to

estimate µ0∆M exp from the simulation result ∆θ̄sim (N sim = 1600 and ssim = 1) is

µ0∆M exp

∆θ̄sim
= 2µ0µB

sexp

ssim

√
N simN exp

V exp = 1.7 × 10−9 T. (B.5)

Thus, the peak-to-peak value of θ ∼ 0.5 in Fig. 4.5 corresponds to µ0M ∼ 0.9 nT.

B.3 Analysis of noise signal

The simulated SSL noise data at each temperature θ̄ (tk, T ) has the total duration

of Γ , with the time interval of ∆t between the K points (0 ≤ tk ≤ (K−1)∆t). Note

that the analysis method in this section applies to general noise data, including the

experimental noise data Φ (tk, T ).

Calculation of power spectral density from segments

To increase the signal-to-noise ratio of the power spectral density (PSD), I average

the calculation results from split segments. The original time sequence θ̄(tk, T ) is

first split into P shorter segments θ̄p(tk, T ) (0 ≤ p ≤ P − 1). Each segment has

the duration γ = Γ/P and the Kp = K/P data points. The PSD of each segment

is calculated using the standard formula as

Sθ̄p (ωj, T ) = 1
πγ

∣∣∣∣∣∣∆t
Kp−1∑
k=0

e−iωjtk θ̄p (tk, T )

∣∣∣∣∣∣
2

,
(B.6)
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where ωj/(2π) = j/γ (0 ≤ j ≤ Kp/2). The final PSD is obtained by averaging

the PSDs from all the segments as

Sθ̄ (ωj, T ) = 1
P

P −1∑
p=0

Sθ̄p (ωj, T ) . (B.7)

The standard error of this segments-averaging can be used as the error bar of the

PSD. In the simulation, an average is further taken over 10 independent MC runs

to exclude the possible dependence on initial conditions, and the standard error

of this independent-run-averaging is used as the error bar. Larger P improves the

signal-to-noise ratio but degrades the frequency resolution ∆ω/(2π) = 1/γ = P/Γ .

Filtering of frequency components

Filtering of Fourier components is useful to explore noise properties in a certain

frequency range. This is achieved by calculating the Fourier components as

θ̄ (ωj, T ) = ∆t
K−1∑
k=0

e−iωjtk θ̄ (tk, T ) , (B.8)

setting θ̄ (ωj, T ) = 0 at the frequencies out of interest, and then performing an

inverse Fourier transform on the remaining non-zero Fourier components.



C
Spiral spin liquid noise simulation for

three-dimensional spins

I performed the spiral spin liquid (SSL) simulation explained in Chapter 4 also for

Heisenberg spins. The only difference is the extension of the spin configuration

space from two-dimensional XY to three-dimensional Heisenberg, and everything

else is kept unchanged: the system size L = 40, the SSL Hamiltonian Eq. 4.3, and

the simulation methods. Just one independent MC run is performed, so the error

bars of the power spectral density are the standard error of averaging the PSDs

from the split segments (Appendix B).

The equilibrated spin configurations at four different temperatures in Fig. C.1A

illustrate that the spatial spin correlations grow upon cooling also for Heisenberg

spins. The power spectral density Sθ̄x
(ωj, T ) in Fig. C.1B is in a nearly scale-

invariant form and exhibits the powerful low-frequency fluctuation. The noise

variance σ2
θ̄x,y,z

(T ) in Fig. C.1C grows down to the crossover peak at T ∼ 0.1|J1|,

below which it gently drops with the slope of approximately T 1. These observations

demonstrate that the qualitative features of the XY-model SSL noise explained in

Chapter 4 arise regardless of the spin dimension. Nevertheless, the XY-spin simu-

lation results reproduce the experimental Ca10Cr7O28 noise quantitatively better.
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Figure C.1: The results of the L = 40 spiral spin liquid Monte Carlo simulation for
three-dimensional spins. (A) Visualization of the spins in the equilibration process. The
local x-direction spin θx is indicated by the corresponding color in the top-left color map.
The spatial spin correlation is scarce at the high temperature T = 0.5|J1| but develops
as the system is cooled down to 0.1|J1|, 0.05|J1|, and 0.005|J1|. (B) Power spectral
density Sθ̄x

(ωj , T ) of the simulated spiral spin liquid noise θ̄x(tk, T ) for seven selected
temperatures. It shows the intense low-frequency fluctuation down to at least 10 Hz
with a nearly scale-invariant form. 1 MC time step is taken to be 1 µs. The error bars
are given by the standard error of averaging the power spectral densities from the split
segments. The power spectral density SM (ωj , T ) of the corresponding magnetization
noise estimated from Eq. B.5 is shown on the right-hand axis. ω−1.4 line (gray) is drawn
as a guide to the eye. (C) Variance σ2

θ̄
(T ) of the simulated spiral spin liquid noise

θ̄x,y,z(tk, T ), calculated after filtering out the fluctuations above 1 kHz. The variance
increases down to T ∼ 0.1|J1| and then decreases approximately as T 1. The estimated
value of the corresponding magnetization noise variance σ2

M (T ) is shown on the right-
hand axis.
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