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ABSTRACT Dynamical heterogeneity1,2,3, in which transitory local fluctuations occur in the 

conformation and dynamics of constituent particles, is essential for evolution of supercooled 

liquids4,5,6 into the glass state12. Yet its microscopic spatiotemporal phenomenology has 

remained unobservable in virtually all supercooled glass forming liquids. Recent theoretical 

advances predict that corresponding dynamical heterogeneity7-11 could also occur in 

supercooled12 magnetic monopole fluids13,14,15. Motivated thus, we searched for dynamical 

heterogeneity when entering the supercooled monopole fluid of Dy2Ti2O7. By measuring 

microsecond-resolved spontaneous magnetization noise 𝑀(𝑡, 𝑇) at temperatures between 

15 mK < 𝑇 < 2500 mK we discover a sharp bifurcation in monopole noise16,17 

characteristics beginning below 𝑇 ≈ 1500 mK, with the appearance of powerful monopole 

current bursts. This unique new form of dynamical heterogeneity first emerges upon 

entering the supercooled monopole fluid regime, reaches maximum intensity near 𝑇 ≈

500 mK and then terminates along with coincident loss of ergodicity near 𝑇 ≲ 250 mK. 

Surprisingly, however, low intensity monopole noise representing activity at approximately 

2% of the Dy sites persists below 𝑇 ≲ 250 mK, implying a population of dynamical 

monopoles trapped within the spin-ice ground state as 𝑇 → 0. This overall phenomenology 

significantly expands our knowledge of both supercooled monopole fluids7-12 and of the 

ground state of spin-ice7-11,13-15. More generally, we demonstrate how comprehensive direct 

detection of the time sequence, magnitude and statistics of dynamical heterogeneity can 

greatly accelerate fundamental vitrification studies1-6.  

 

 

 

 



“The deepest and most interesting unsolved problem in solid state theory is probably the 

theory of the nature of glass and the glass transition” P. W. Anderson18. Although most pure 

liquids crystallize at their melting temperature, glass-forming liquids instead first enter the 

supercooled state1,2,3 and eventually transition into a glass state. During this evolution it is 

widely hypothesized that the dynamics of constituent particles slow down radically and in 

an increasingly heterogeneous fashion1,2,4,5,6, so that  local regions relax on different 

trajectories at different rates in a continuously evolving fashion. Such dynamically 

heterogeneous transients are continuously occurring thermally activated19-24  events about 

an unchanging thermodynamic equilibrium1,2,6. How their atomic-scale phenomenology 

controls the vitrification process remains an intense focus of research1-6. Current theoretical 

progress includes predictions of frequency-resolved loss of ergodicity25; of trapped 

nanoscale droplets with internal fluidic particle dynamics26; and of evolution from 

supercooled dynamical heterogeneity through the glass transition27. Only recently, however, 

have such phenomena been hypothesized to occur7-11 upon cooling the magnetic monopole 

fluids of spin-ice.  

 

 The most pertinent material is Dy2Ti2O7 which contains a sub-lattice of corner-

sharing tetrahedra, each having a magnetic Dy3+ ion at its four vertices. The Dy magnetic 

moments (𝜇 ≈ 10 𝜇𝐵) are Ising-like, being constrained to point along their local [111] 

directions towards or away from the tetrahedron center. The consequent dipolar spin-ice 

Hamiltonian is28 
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Here 𝑺𝑖 represent the Ising spin at each Dy site, 𝒓𝑖𝑗 are the inter-site distances, J ≈ 1.1 K is 

the exchange energy, D =  μ0μ2/(4πa3) the nearest-neighbor dipole interaction energy, and 

a is the nearest-neighbor distance between moments. From Eqn. 1, only six possible ground-

state spin configurations exist on each tetrahedron, all being 2-in:2-out spin arrangements29. 

Although the dipole interactions in Eqn. 1 should stabilize long-range magnetic order30 near 

𝑇 ≈ 200 mK, no such state is observed to below 𝑇 ≈ 50 mK 31 . Hence, the actual 𝑇 → 0 state 

of pyrochlore spin-ice, and the monopole kinetics generating it, remain a focus of intense 

research7-15. 

 

 By contrast, the excited states governed by Eqn. 1 at higher temperatures are well 

understood13,14,15 to be mobile magnetic charges (monopoles) of both signs: +𝑚 for 1-in:3-

out and −𝑚 for 3-in:1-out. They exist in a magnetic-charge neutral fluid in which equal 

numbers of +𝑚 and −𝑚 are thermally excited across the Dy spin-flip energy barrier Δ ≈ 4 K. 

However, below T ≈ 1.5 K this monopole fluid enters a supercooled state12. Here, the 



magnetic susceptibility exhibits a Havriliak-Negami (HN) form12 characteristic of 

supercooled glass forming liquids6. Further, the relaxation time 𝜏(𝑇) = 𝐴exp(𝐷𝑇0 (𝑇 − 𝑇0⁄ ))  

where D is the ‘fragility’ index, diverges at 𝑇0 ≈ 240 mK ± 30 mK on a Vogel–Tammann–

Fulcher (VTF) trajectory12 characteristic of supercooling4,5,6.  Additionally,  Monte Carlo 

simulations32 predicting magnetization noise with spectral density 𝑆𝑀(𝜔, 𝑇) ∝  𝜏(𝑇)/(1 +

(𝜔𝜏(𝑇)𝑏) led to the discovery16 of magnetic monopole noise exhibiting 𝑏(𝑇) ≈ 1.516,17. 

Because this is consistent with advanced monopole transport theories based on fractal 

percolative clusters9 (FPC) of monopole trajectories, heterogeneous monopole transport 

dynamics is construed. The broad distribution of 𝜒(𝜔, 𝑇) relaxation times, the VTF form 

measured for 𝜏(𝑇), and the monopole noise power-law, all imply by analogy with general 

supercooled glass-forming liquids1-6 that monopole dynamical heterogeneity should exist in 

Dy2Ti2O7. 

 

An array of theories7-11 have focused on monopole kinetics approaching the T → 0 

state of spin-ice. For all the high-temperature state is a thermally activated plasma of quasi-

free monopoles13,14,15 (state I). Refrigeration from state I is anticipated7,9,10,11 to yield a 

supercooled monopole fluid (state II) sustaining some form of dynamical heterogeneity. 

Extended spin-ice models predict growing dynamical heterogeneity resulting in loss of 

ergodicity near 𝑇/𝐽 ≈ 0.1 when spin-spin correlation time diverges7; similarly, dumbbell 

spin-ice models predict that enhancing dynamical heterogeneity near 𝑇 ≈ 400 mK in 

Dy2Ti2O7, should cause the ratio 𝜔𝑆(𝜔, 𝑇)/𝑇 χ′′(𝜔, 𝑇) to diverge from its ergodic high-

temperature limit10. Finally, analysis of T→ 0 state III using extended spin-ice models, yields 

predictions of quantum dynamical monopoles persisting as T→ 0 at approximately 2% of Dy 

sites7. However, the empirical phenomenology of monopole dynamics in states II and III are 

virtually unknown. 

 

Recent theoretic advances predict a specific new form of heterogeneous monopole 

dynamics based on the existence of two spin-dynamical time-scales9. This constrains the 

trajectories of each monopole to a nanoscale FPC, a concept now well supported by 

experiment9,16,17. However, in the supercooled state II where monopole density is low, as 

each monopole traverses a unique FPC its interactions with the local spin environment are 

predicted to ‘unblock’9  the motion of other monopoles in adjacent FPCs. As the time periods 

for which FPCs remain blocked diverge9 towards T0, a single sudden FPC unblocking may 

trigger sequential cascades of FPC releases of different sizes, resulting in a wide range of 

monopole current bursts. This unique new form of atomic-scale dynamical heterogeneity is 

specific to supercooled monopole fluids9. 

 

 To search for such phenomena in Dy2Ti2O7, we use SQUID-based flux-noise 

spectrometry with magnetic field sensitivity 𝛿𝐵 = 𝜇0𝛿𝑀 ≤ 10−14  T √Hz⁄  using the 



apparatus shown schematically in Fig. 1a (Methods section 2). Here 𝐿𝑝  is the inductance of 

both the sample pickup coil and of a counter wound compensation coil, 𝐿𝑖  is a SQUID-input 

coil inductance, and ℳ𝑖  is a mutual inductance to SQUID. Our spectrometer is operated on a 

cryogen-free dilution refrigerator in the range 15 mK ≲ 𝑇 ≲ 2500 mK. The time-sequence of 

the magnetic flux generated by the sample, 𝛷𝑝(𝑡), is measured with microsecond precision 

using a persistent superconducting circuit that transforms it into the flux 𝛷(𝑡) at the SQUID 

input coil 

 𝛷(𝑡) = (ℳi/(2𝐿p + 𝐿i))Φ𝑝(𝑡)     (2) 

The SQUID output voltage 𝑉(𝑡) = 𝐺𝛷(𝑡) where 𝐺 is total gain of the electronics, is then 

related to magnetization as 𝑉(𝑡) ≡ 𝑀(𝑡)/𝐶0 where the value of 𝐶0 can be calibrated 

accurately for a given experimental geometry (Methods section 2). The time-sequences of 

magnetization fluctuations 𝑀(𝑡, 𝑇) ≡ 𝐶0𝑉(𝑡)  are recorded from whence the power spectral 

density of magnetization noise is 𝑆𝑀(𝜔, 𝑇) ≡ 𝐶0
2𝑆𝑉(𝜔, 𝑇). The separately measured noise 

contribution of the superconductive circuitry and SQUID are always first subtracted. The 

magnetic susceptibility 𝜒(𝜔, 𝑇) is measured simultaneously with 𝑆𝑀(𝜔, 𝑇) using a single 

spectrometer over the temperature range 15 mK < 𝑇 < 2500 mK (Methods section 2).  

 

 For an ergodic monopole fluid, the fluctuation-dissipation theorem (FDT) linking 

𝑆𝑀(𝜔, 𝑇) to the imaginary magnetic susceptibility  𝜒′′(𝜔, 𝑇) would predict10  

 𝑆𝑀(𝜔, 𝑇) = 2𝑘B𝑇 χ′′(𝜔, 𝑇)/𝜔𝜋𝜐𝜇0                   (3) 

where 𝜐 is the sample volume, 𝑘B is Boltzmann’s constant, 𝜇0 the permeability of vacuum 

and we use SI units throughout. For our Dy2Ti2O7 samples, a typical simultaneously 

measured 𝜒′(𝜔, 𝑇), 𝜒′′(𝜔, 𝑇) and 𝑆𝑀(𝜔, 𝑇) are plotted in Fig. 1b (Methods section 3). Here, 

because of the wide distribution of microscopic relaxation times12 (Methods section 1), even 

when 𝜏(𝑇) diverges, high frequency monopole dynamics must still be present at a subset of 

sites. Hence, to explore the evolution of Eqn. 3 to lowest temperatures, we plot in Fig. 1c the 

measured 𝑆𝑀(𝜔, 𝑇) versus independently measured 2𝑘B𝑇 χ′′(𝜔, 𝑇)/𝜔𝜋𝜐𝜇0 at frequencies 

where dynamics is manifestly occurring in the monopole noise. Evidently, the fluctuation-

dissipation theorem holds for 𝑇 ≳ 500 mK. However, because of the departure of 

𝑋(𝜔, 𝑇) ≡ 𝑆𝑀(𝜔, 𝑇)𝜔𝜋𝜐𝜇0 / 2𝑘B𝑇 χ′′(𝜔, 𝑇) from 1 starting near 𝑇 ≲ 500 mK, the monopole 

fluid here slowly exits the ergodic regime. Eventually FDT is strongly violated with complete 

loss of monopole ergodicity 𝑇 ≲ 250 mK (Fig. 1c , Methods section 4). 

 

 A key signature of monopole dynamical heterogeneity would be random and intense 

monopole current bursts9,11. Hence, we next measure the time-sequences of flux threading 

the sample at its pickup coil, 𝛷𝑝(𝑡, 𝑇). These are recorded from 𝑉(𝑡, 𝑇) in the form 𝛷𝑝(𝑡, 𝑇) =

 𝑉(𝑡, 𝑇)/𝐺(ℳi/(2𝐿p + 𝐿i)) from Eqn. 2. If each monopole exhibits a magnetic-charge 𝑚 and 

total magnetic flux Φ𝑚 = 𝑚𝜇𝑜
14, and because the magnetic flux through any superconductive 

closed-loop circuit is quantized, when a magnetic monopole passes through such a loop it 



generates a supercurrent exactly counterbalancing Φ𝑚. This is detectable by a SQUID as a 

flux generated elsewhere in the circuit. Under these circumstances, the net monopole 

current (Methods section 5) through the pickup coil is33  

 𝐽(𝑡, 𝑇) ≡ �̇�𝑝(𝑡, 𝑇)/𝜇0           (4) 

For measurements of 𝐽(𝑡) from �̇�𝑝(𝑡) we use an 80 μs box-car average, with typical 

measured time sequences of |𝐽(𝑡)| shown in Fig. 2a. The probability distribution of |𝐽(𝑡)| is 

shown in Fig. 2b, wherein monopole currents range in intensity over almost five orders of 

magnitude with maximum intensity occurring near 𝑇 = 900 mK. The temperature 

dependence of the rate of occurrence 𝑟|𝐽| of monopole currents with magnitude |𝐽| is 

presented in Fig. 2c, while the average intensity of monopole current |𝐽|̅̅ ̅(𝑇) is shown in Fig. 

2d. Although not manifest here, there are two populations of monopole currents, those 

related to conventional monopole noise and intense current bursts existing over extended 

time periods producing large excursions in 𝛷𝑝(𝑡) (Methods section 5). A strong maximum in 

monopole current burst intensity occurs entering the supercooled regime, followed by a 

rapid fall and disappearance below 𝑇 ≲ 250 mK. Intense current bursts always involve the 

simultaneous motion of large numbers of monopoles in the same direction followed by a 

coordinated reverse monopole current a fraction of a second later (Fig. 2a). The simplest and 

most logical explanation is that such rapid intense cooperative dynamics of multiple 

monopoles occurs locally in space, where their mutual proximity allows their coordination 

in time.  

 

 As to the energetics of this dynamic heterogeneity, Fig. 3a provides a typical example 

of magnetization fluctuations in terms of  𝛷𝑝(𝑡) , with the typical background 𝛷𝑝(𝑡) absent 

of any sample shown in black. The energy 𝜀 associated with each monopole configuration 

can be determined accurately since 

𝜀(𝑡) ≡ 𝛷𝑝
2(𝑡, 𝑇) 2𝐿p  ⁄      (5) 

(Methods section 5). Typical examples of measured 𝛷𝑝
2(𝑡, 𝑇) are shown in Fig. 3b over a 

representative set of temperatures. Typical histograms of the rate of occurrence 𝑟(𝜀) of 

states with energy 𝜀 are presented in Fig. 3c, where each 𝑟(ε, 𝑇) is acquired in a continuous 

1000 second time interval at fixed T (see Supplementary Video 1). Strikingly, while the 

energetics 𝜀(𝑡) are gaussian and narrow in distribution for 𝑇 ≳ 1500 mK, at lower 

temperatures a sharp bifurcation occurs into a bi-modal distribution containing less 

frequent highly energetic events, each exemplifying a monopole-current burst. Eventually 

below 𝑇 ≲ 250 mK these phenomena disappear, and a low energy gaussian distribution 

reappears. This complete phenomenology is represented by all fitted 𝑟(ε, 𝑇) data shown as 

a color-coded 2D histogram in Fig. 3d. Here, the dashed curve ε̅𝑀(𝑇) indicates the average 

energy of conventional monopole generation-recombination noise16,17, while the dotted 

curve ε̅𝐵(𝑇) plots the average energy of monopole current bursts ascribed to dynamical 

https://drive.google.com/file/d/1PGJhf1yATtgHAipJO4BmGmudxfrByGVm/view?usp=sharing


heterogeneity. Measured relative energy intensities of monopole current bursts ε̅𝐵(𝑇) and 

of ε̅𝑀(𝑇) are shown in Fig. 3e. 

 

  Dynamical heterogeneity theory for conventional supercooled fluids is often based 

upon the concept of a potential energy landscape (PEL). This is the global potential energy 

U(rN) of N-particle configurations, having distinct local minima that are explored 

dynamically by thermally activated fluctuations1,2,6,19-24. In such a PEL context, one would 

consider thermally activated transitions between heterogeneous monopole-spin 

configurations separated by energy E.  Thus, we evaluate the maximum energy E of each 

monopole current burst (Methods section 5) as derived from local maxima in 𝜀(𝑡).  Plots of 

the measured rate of occurrence 𝑅(𝐸, 𝑇) of events with energy 𝐸 are presented in Fig. 4a. 

Here it is conspicuous that 𝑅(𝐸, 𝑇) always exhibits a distribution exponential in E. Figure 4b 

shows the complete temperature dependence of 𝑅(𝐸, 𝑇) where this is borne out. In a PEL 

context, a highly simplified model for the probability of a transition requiring energy E could 

be 𝑃(𝐸, 𝑇) = 𝑁(𝑇) exp (−
𝐸

𝑘𝑇
)/𝑍 where 𝑁(𝑇) = 𝑁exp(−

∆

𝑘𝑇
) is the total number of monopoles 

in the sample at temperature T, and 𝑍 is the PEL partition function. Then, 𝑙𝑛𝑃(𝐸, 𝑇) =

𝐶𝑜𝑛𝑠𝑡 − 𝑙𝑛𝑍 − (𝛥 + 𝐸)/𝑘𝑇 so that measured 𝛿 = −𝜕𝑙𝑛𝑃(𝐸, 𝑇)/𝜕(𝐸/𝑘𝑇) would have values 

in the range 𝛿~1 when such a model has validity. Such effects are observed approximately 

between 450 mK and 250 mK in Dy2Ti2O7 as shown in Fig. 4c. Consequently, the  PEL 

concept1,2,6,19-24, but now for thermally stimulated transitions between monopole-spin 

configurations separated by E, may provide a novel approach to dynamical heterogeneity 

deep in the supercooled monopole phase. 

 

 Exploration of the noise power-law in the supercooled regime via its power spectral 

density 𝑆𝑀(𝜔, 𝑇) ≡ 𝐶0
2𝑆𝑉(𝜔, 𝑇) is carried out by fitting to 𝑆𝑀(𝜔, 𝑇) ∝  𝜏(𝑇)/(1 + (𝜔𝜏(𝑇)𝑏) 

(Supplementary Fig. 8). The fit values of 𝑏(𝑇) are presented in Fig. 5c (iv), showing that for 

500 mK < 𝑇 < 1500 mK, 𝑏(𝑇) ≅ 1.5 as expected9. A sharp drop in 𝑏(𝑇) emerges with falling 

temperature, eventually reaching values near 𝑏 ≈ 1 as 𝑇 → 0 in regime-III (Methods section 

8). Moreover, considering this 𝑇 → 0 monopole noise, its total power is quantified by the 

measured variance 𝜎𝑀
2 (𝑇) ≡ 〈𝑀(𝑡)2〉 − 〈𝑀(𝑡)〉2 . As shown in Fig. 5c (v), 𝜎𝑀

2 (𝑇) from data in 

Fig. 5a diminishes through the supercooled regime. However, for 𝑇 ≲ 250 mK, 𝜎𝑀
2 (𝑇) 

reaches a steady non-zero level of approximately 10% of its 𝑇 ≈ 1500 mK value. Detailed 

analysis of 𝑆𝑀(𝜔, 𝑇) in Fig. 5b reveals that this signal represents persistent monopole noise 

at approximately 2% of all Dy sites (Methods section 9). This unanticipated phenomenon 

occurs in the ultra-low temperature regime where the linear-response relaxation time has 

diverged 𝜏 → ∞. Among possible explanations are quantum dynamical monopoles due to an 

extended spin-ice Hamiltonian7, or due to “ghost” spins at absent Dy ions whose adjacent 

tetrahedra contain a potentially itinerant monopole/antimonopole pair34. 

 



 We amalgamate all the above results on the emerging phenomenology of dynamical 

heterogeneity in Dy2Ti2O7 spin-ice, in Fig. 5c. Below 𝑇 ≈ 1500 mK, intense monopole current 

bursts emerge whose maximum magnitude relative to the conventional magnetic monopole 

noise ℛ = max (𝜀𝐵)/ 𝜀𝑀 grows rapidly, reaching maximum near 𝑇 ≈ 500 mK and eventually 

disappears near 𝑇 ≲ 250 mK (Fig. 5c (i)). Traversing this supercooled regime, a direct 

measure of monopole ergodicity 𝑋(𝜔, 𝑇) diminishes cumulatively, reaching a minimum at 

𝑇 ≲ 250 mK (Fig. 5c (ii)). As surmised from their Boltzmann-like statistics (Fig. 4c) thermally 

activated transitions between monopole-spin configurations of energies 𝐸 occur for 

250 mK ≲ 𝑇 ≲ 400 mK (Fig. 5c (iii)). Similarly, the power law of magnetization noise 

collapses from the expected value9 b=1.5 toward b=1 (Fig. 5c (iv)). Although dynamical 

heterogeneity is suppressed and ergodicity lost by 𝑇 ≈ 250 mK where the spin-ice 

ostensibly enters a glass state, narrowly distributed monopole noise persists for 𝑇 ≪

250 mK (Fig. 5b), implying persistent high frequency monopole dynamics at approximately 

2% of Dy sites. Overall, these data provide a far clearer empirical understanding of 

microscopic dynamics of monopole fluids in Dy2Ti2O7. Many long-anticipated phenomena7-

11 have materialized, including discovery and quantification of dynamical heterogeneity of 

supercooled monopole fluids (Fig. 3, Fig. 5c) appearing in the form of monopole current 

bursts (Fig. 2); continuous loss of ergodicity traversing the dynamical heterogeneity regime 

(Fig. 1c, Fig. 5c), thermal transitions between monopole-spin configurations of energies 𝐸 

apparently within a potential energy landscape (Fig. 4), and persistent high frequency 

monopole dynamics at 𝑇 → 0 (Fig. 5a, Fig 5c). Clearly, all five characteristics span the same 

three ranges: a thermally activated quasi-free monopole fluid (I) in darker blue; the 

supercooled regime encompassing monopole dynamical heterogeneity (II) in white; and an 

exceptional regime apparently supporting dynamical monopole matter as 𝑇 → 0 (III) in light 

blue. This comprehensive new phenomenology for supercooled monopole fluids (Fig. 5c) can 

greatly facilitate the development of accurate atomic-scale theories for monopole freezing 

and thus the true ground state of in spin-ice7-12,15,28. 

 

 Further, the striking correspondence between the phenomenology of dynamical 

heterogeneity in supercooled monopole fluids (Figs. 2-5) and that in supercooled liquids1-6 

emphasizes the universality of these concepts, and also reveals fundamental new research 

avenues. Direct access to the time sequence (Fig. 2), energy states (Fig. 3) and thermal 

statistics (Fig. 4) of dynamical heterogeneity contributes abundant new data to guide and 

evaluate realistic theories of the supercooled glass-formative process. Indeed, PEL-based 

theories1,2,6,19-24 contain many heretofore untestable predictions. For example, the glass 

fragility index D and relaxation time 𝜏(𝑇) are determined by the PEL configurational 

entropy6,19,20 which, for monopoles, can be controlled directly by external magnetic fields35. 

Or, the time sequence of fluctuating PEL configuration energies due to dynamical 

heterogeneity, which has long been possible to simulate for different models22, can now be 

measured directly for monopoles (Fig. 3). Or, the four-point correlation function 𝜒4(𝑡, 𝑇) 



quantifying fluctuations of the conventional correlation function 𝐶(𝑡, 𝑇) due to dynamical 

heterogeneity19,23,24 may now become directly measurable for monopole fluids. Perhaps 

most radical:  by emulating our approach (Figs. 2-4), nanosecond time-resolved electrostatic 

noise measurements could become a new frontier for vitrification studies of conventional 

glass forming fluids1-6,19-27.  



Figure 1 Magnetic Monopole Noise Spectrometry 

A. Schematic of the experimental apparatus16,33 we use for detection of dynamical 

heterogeneity due to magnetic monopole current bursts in the supercooled monopole 

fluid of Dy2Ti2O7. 

B. Typical examples of simultaneously measured Dy2Ti2O7 magnetic susceptibility  𝜒′(𝜔, 𝑇), 

𝜒′′(𝜔, 𝑇) and magnetization noise spectrum 𝑆𝑀(𝜔, 𝑇) at 𝑇 = 700mK. Complete 

simultaneous 𝜒′′(𝜔, 𝑇):𝑆𝑀(𝜔, 𝑇) data spanning 15 mK < 𝑇 < 2500 mK are shown in 

Supplementary Figs. 3b and 5a.  

C. Temperature dependence of simultaneously measured Dy2Ti2O7 𝑆𝑀(𝜔, 𝑇) and 

𝜒′′(𝜔, 𝑇)2𝑘𝑇/𝜔𝜋𝜐𝜇0. Evidently, monopole ergodicity parameterized by 𝑋(𝜔, 𝑇) ≡

𝑆𝑀(𝜔, 𝑇)/{𝜒′′(𝜔, 𝑇)2𝑘𝑇/𝜔𝜋𝜐𝜇0} diminishes slowly beginning near 𝑇 ≈ 500 mK, to be 

lost manifestly by 𝑇 ≲ 250 mK. The samples remain demonstrably in good thermal 

equilibrium with the thermometer and refrigerator down to least 50 mK (see Fig. 5). 

 

Figure 2 Monopole Current Bursts 

A. Typical measured time sequences of monopole current magnitudes |𝐽(𝑡)| from Eqn. 4 

over a wide range of temperatures spanning the homogeneous monopole fluid regime I, 

into the supercooled regime II, and finally the 𝑇 → 0 regime III. 

B. Typical measured probability distribution of the monopole current burst magnitudes 

|𝐽(𝑡)| e.g. in A. The measured monopole currents span an intensity range of 

approximately five orders of magnitude, with maximum intensity individual events 

occurring at 𝑇 ≈ 900 mK. These data are highly typical of multiple Dy2Ti2O7 samples 

studied. 

C. Typical time rate 𝑟|𝐽| of monopole current bursts with magnitude |𝐽|, measured versus 

temperature T. The rate of occurrence 𝑟|𝐽| of a monopole current with magnitude  |𝐽|  is 

defined as the number 𝜂(|𝐽|) observed in given time interval I: 𝑟|𝐽| ≡ 𝜂(|𝐽|)/𝐼. 

D. Average measured intensity of monopole current bursts |𝐽| ̅̅ ̅̅  versus temperature. Clearly, 

approaching the supercooled regime below 𝑇 ≈ 1500 mK they intensify dramatically, 

only to fall precipitously reaching a plateau 𝑇 ≲ 250 mK. 

 

Figure 3 Noise Bifurcation due to Dynamical Heterogeneity 

A. Typical example of unprocessed 𝛷𝑝(𝑡) data showing monopole current-burst events, at 

𝑇 = 700 mK. The box-car averaged (see Methods section 5) signal is shown in dark green 

overlayed on the unprocessed 𝛷𝑝(𝑡) data (light green). The identically box-car averaged 

signal from the empty pickup coil is shown in black. 

B. Typical examples of the 𝛷𝑝
2(𝑡, 𝑇) from directly measured time dependence of 

spontaneous magnetic flux 𝛷𝑝(𝑡). This is shown, for example, at temperatures 50 mK, 

250 mK, 500 mK, 700 mK, 900 mK, 1500 mK, and 2500 mK. 



C. Typical histograms of the measure rate of flux states 𝑟(ε, 𝑇) versus ε. We define the rate 

of occurrence 𝑟(𝜀) of any state with energy 𝜀 as the number 𝑚(𝜀) observed in given time 

interval I: 𝑟(𝜀) ≡ 𝑚(𝜀)/𝐼. Conventional monopole generation-recombination noise with 

a simple Gaussian distribution persists until 𝑇 ≈ 1500 mK. More intense monopole 

current bursts with far higher energy appear below this temperature resulting in a 

bimodal distribution of probabilities as shown via histograms at left, and by the fit curves 

to each histogram shown at right. Eventually below 𝑇 ≲ 250 mK the bimodal distribution 

of monopole current burst energies disappears. 

D. Monopole noise bifurcation effect in C is presented as a color-coded 2D histogram 

containing 𝑟(ε, 𝑇) versus ε as a function of temperature 𝑇. Dashed curve ε̅𝑀(𝑇) indicates 

the average energy of conventional monopole noise, while the while the dotted curve 

ε̅𝐵(𝑇) plots the average energy of monopole current bursts ascribed to dynamical 

heterogeneity. 

E. Relative intensities of average energy of monopole current bursts ε̅𝐵(𝑇) and of 

conventional monopole noise ε̅𝑀(𝑇).  

 

Figure 4 Statistical Physics of Monopole Dynamical Heterogeneity 

A. Plots of typical measured rate 𝑅(𝐸) of monopole current bursts of maximum energy 𝐸; 

e.g. at temperatures 50 mK, 250 mK, 500 mK, 700 mK, 900 mK, 1500 mK and 2500 mK. 

We define the rate of occurrence 𝑅(𝐸) such that when 𝑛(𝐸) such events with energy E 

are observed in a given time interval I: 𝑅(𝐸) ≡ 𝑛(𝐸) /I. 

B. Complete temperature dependence of the rate 𝑅(𝐸) of monopole current bursts versus 

𝐸 as a function of 𝑇.  

C. Plotting 𝑙𝑛𝑃(𝐸, 𝑇) versus 𝐸/𝑘𝑇 for 250 𝑚𝐾 ≲ 𝑇 ≲ 450 𝑚𝐾 reveals an approximate 

collapse of that subset of data indicative of thermally activated transitions between a 

range of monopole-spin configurations each with distinct energy E.  

 

Figure 5 Evolution Monopole Dynamical Heterogeneity with Temperature 

A. Unprocessed magnetization noise power spectral density𝑆𝑀(𝜔, 𝑇) data versus 𝑇 

(processed data and fit quality shown in Supplementary Fig. 5). The measured empty-

coil noise floor is plotted as a black curve and lies below the monopole noise spectra. 

B. Measured magnetization noise 𝑆𝑀(𝜔, 𝑇) at high frequency shown for 𝑇 < 800 mK (color 

code same as A). High frequency noise produced by monopoles decreases with 

temperature until 𝑇 ≈ 250 mK, below which the monopole noise persists unchanged in 

its temperature or frequency characteristics. The measured empty-coil noise floor is 

plotted as a grey surface below the monopole noise spectra. 

C. (i) Measured ratio of maximal monopole current bursts relative to the conventional 

magnetic monopole noise ℛ ≡ 𝑚𝑎𝑥 (𝜀𝐵)/ 𝜀𝑀; (ii) Measured monopole fluid ergodicity 

𝑋(𝜔, 𝑇) = 2𝑘𝐵𝑇𝜒"(𝜔, 𝑇)/𝜔𝜋𝜐𝜇0𝑆𝑀(𝜔, 𝑇); (iii) Measured thermal activation factor 𝛿 ≡

−𝜕𝑙𝑛𝑃/𝜕(𝐸/𝑘𝑇) ostensibly between monopole-spin configurations of energy E; (iv) 



Measured frequency-dependent power law 𝑏(𝑇) of magnetization noise. Below 250 mK 

𝑏(𝑇) can no longer be extracted from the magnetization noise using Eqn. 4; (v) Measured 

variance 𝜎𝑀
2 (𝑇) of magnetic monopole noise revealing that saturation at approximately 

10% of the intensity observed at 𝑇 ≈ 1500 mK. Evidently, all five characteristics of 

magnetic monopole dynamics span the same three ranges of temperature: thermally 

activated quasi-free monopole fluid (I) indicated in darker blue; the supercooled regime 

encompassing newly discovered monopole dynamical heterogeneity phenomenology (II) 

in white; and the exceptional regime revealed to support dynamical monopole matter as 

𝑇 → 0 (III) in light blue.  
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Supplementary Information   
 

1. Susceptibility and Relaxation Time Studies of Dy2Ti2O7  
Magnetic AC Susceptibility 
The magnetic susceptibility 𝜒(𝜔, 𝑇) = 𝜒′(𝜔, 𝑇) − 𝑖𝜒′′(𝜔, 𝑇) of Dy2Ti2O7 is known empirically 
with high precision36-45, as is the fact that below 𝑇 ≈ 500 mK the linear-response relaxation 
rates in Dy2Ti2O7 become ultra-slow46-48. Supplementary Fig. 1 contains a review of 
measured linear-response relaxation times of Dy2Ti2O7 using different experimental 
techniques with data from this work included.  
 
Previous high precision studies of the magnetic susceptibility12 of Dy2Ti2O7 identified that 
the frequency-dependence of the magnetic susceptibility is very accurately parametrized by 
the Havriliak-Negami (HN) equation49 

     𝜒(𝜔, 𝑇) = 𝜒∞ + 𝜒0(𝑇)/(1 + (𝑖𝜔𝜏(𝑇))𝛼(𝑇))
𝛾(𝑇)

                          (M1) 

Solving for the real and imaginary components of M1 we find that  

                                                   𝜒′ = 𝜒∞ + 𝜒0
cos(𝛾𝜙)

(1+2(𝜔𝜏)𝛼 cos(
𝜋𝛼

2
)+(𝜔𝜏)2𝛼)

𝛾/2                                (M2) 

                                                       𝜒′′ = 𝜒0
sin(𝛾𝜙)

(1+2(𝜔𝜏)𝛼 cos(
𝜋𝛼

2
)+(𝜔𝜏)2𝛼)

𝛾/2                                            (M3) 

Here 𝜒∞ is the real value of 𝜒 in the 𝜔 → ∞ limit, 𝜏 is the characteristic relaxation time, 𝛼 and 
𝛾 describe the broadening and asymmetry of relaxation times and  

                                                   𝜙 = arctan((𝜔𝜏)𝛼 sin (
𝜋𝛼

2
)/1 + (𝜔𝜏)𝛼 cos (

𝜋𝛼

2
))                          (M4) 

 
Further, the divergence of linear-response relaxation times derived from M1 was 
demonstrated to be 
      𝜏(𝑇) = 𝐴exp(𝐷𝑇0 (𝑇 − 𝑇0⁄ ))        (M5) 
where 𝐷 = 13.6 ± 5.0 is the fragility index of the glass-forming state and 𝑇0 ≈ 240 mK ±
30 mK. This is the Vogel–Tammann–Fulcher (VTF) form characteristic of a supercooled 
glass-forming liquid. Hence, these forms for the susceptibility 𝜒(𝜔, 𝑇)  and the relaxation 
time 𝜏(𝑇)  identified the existence of a supercooled monopole liquid in Dy2Ti2O7, a deduction 
that is consistent with the empirical 𝜒(𝜔, 𝑇) and 𝜏(𝑇)11,12,16,17,50-52 reported by virtually all 
studies. 
 
2. Combined Monopole Noise Spectrometer and AC Susceptometer 
Design 
The monopole noise spectrometer assembly is shown schematically in Supplementary Fig. 
2. The sample holder is a hollow Macor cylinder onto which two superconducting coils, signal 
pick up and field-cancellation coil wound with opposite chirality are connected in-series with 
the input coil of the SQUID. A cylindrical superconductive ‘drive’ coil for applying magnetic 
fields to the sample surrounds the pickup and astatic coil pair. The experiment is mounted 
at the mixing chamber plate of the dilution refrigerator. A silver wire (0.1 mm diameter) is 
fixed with GE varnish to the sample inside the sample coil and brought into thermal contact 
with the temperature sensor, itself screwed to the mixing chamber plate, to ensure reliable 
thermalization. To expel and then shield external magnetic fields, the SQUID is shielded 



within its own Niobium shield, this stage is surrounded by an additional outer Niobium 
cylindrical shield which is in turn enclosed in a mu-metal shield. This spectrometer is 
mounted on the mixing chamber plate of a low-vibration cryogen-free dilution refrigerator, 
vibrationally isolated and enclosed inside an acoustic isolation chamber. The refrigerator 
reaches a base temperature of 12 mK.  
 
Calibration 
The flux at the SQUID input coil is given by  
                 V(𝑡) = 𝐺𝛷(𝑡)                                                             (M6) 
where 𝐺 = 7.31 V/ϕ0 is the total gain of the electronics (Supplementary Fig. 2).  To calibrate 
the astatic coil-pair, a cylindrical 1.6 mm diameter Indium sample is chosen for pickup coil 
calibration and for measuring the imbalance between the pickup and cancellation coils. DC 
magnetic field sweeps are carried out both above and below the 𝑇𝑐 of Indium where the 
voltage response of the SQUID is given by 
        𝑉𝑇>𝑇𝑐

= 𝐶𝜒𝐵𝐴(𝑁1 − 𝑁2)                                                  (M7) 

and 
     𝑉𝑇<𝑇𝑐

= 𝐶𝜒𝐵𝐴(𝑁1 − 𝑁2(1 − 𝐹))                                           (M8) 

The Indium rests inside coil two with N2 turns, 𝐹 = 0.57 is the filling factor of the Indium 
inside the coil and 𝐶𝜒 = 0.0073 V/ϕ0 is the transfer function of the SQUID. N1 is here defined 

as the number of turns in the cancellation coil, while A represents the cross-sectional area of 
both the pickup and astatic coils. The ratio N1/N2 yields a coil imbalance of ~14%. To 
measure the true noise floor of the experimental apparatus, the noise is measured with no 
sample inside the pickup coil. We find the noise floor of the experiment to be 3 × 10−6 

Φ0/√Hz, as shown in black in Fig. 5a and grey in Fig. 5b. 
 
Noise Acquisition 
The time-sequence of the magnetic flux generated by the sample, Φ𝑝(𝑡), is extracted using 

the inductances of the pickup coil 𝐿𝑝  and input coil 

𝐿𝑖 , and ℳ𝑖  the mutual inductance to SQUID  

                                   Φ𝑝(𝑡) ≡ 𝛷(𝑡)/ (
ℳi

2𝐿p+𝐿i
) ≡ 𝑉(𝑡)/𝐺 (

ℳi

2𝐿p+𝐿i
)                                     (M9) 

Using a SR560 Voltage Preamplifier, the signal is amplified and filtered by a low pass filter 
with a cutoff frequency fLP of 3 kHz, above which the is virtually monopole noise. For 
temperatures above 600 mK, an additional high pass filter is added with cutoff fHP of 0.03 Hz. 
The filtered SQUID output voltage 𝑉 is recorded with 10 microsecond resolution for a total 
time of 1000 seconds. 
 
Magnetic Susceptibility Data Acquisition  
AC susceptibility measurements use a SR830 lock-in amplifier to measure the in-phase and 
out-of-phase components of the voltage output of the SQUID. An AC magnetic field 𝐵𝑚𝑜𝑑 is 
driven by the Sine Out function of the lock-in amplifier. This signal (10 mVRMS) passes 
through a 20 kΩ resistor and RF filter before entering the drive coil (Supplementary Fig. 2). 
The response of the Dy2Ti2O7 sample is measured by the SQUID and fed into the lock-in 
amplifier. At each temperature setpoint, four frequency ranges are recorded in succession: 
0.1, 0.3, … , 0.9 Hz;  1, 2, … ,10 Hz;  11, 21, … ,101 Hz; 100, 200, 500, 1000 and 2000 Hz. The 



time constant is chosen to be 𝜏𝐿𝐼 ≥ 3(1/𝑓min) for the respective frequency ranges. The 
sensitivity of the lock-in amplifier is set to 20 mV/nA for 𝑇 < 600 mK and 50 mV/nA for 𝑇 ≥
600 mK. 
 
3. Monopole Noise and AC Susceptibility Analysis 
Noise Analysis 
The magnetization is related to the output voltage of the SQUID as 

                                       𝑉(𝑡) = 𝛷𝑝(𝑡) 𝐺 (
ℳ𝑖

2𝐿𝑝+𝐿𝑖
) =

𝑀(𝑡)

𝐶0
                            (M10)                                          

where 𝐶0 ≡ (
2𝐿𝑝+𝐿𝑖

ℳ𝑖
) (

𝛷0

𝑁𝐴𝐹
) = 2.1 𝑥 10−9 JT−1V−1m−3 is calibrated accurately for our 

experimental geometry. The time-sequences of magnetization fluctuations are then 
recorded from 𝑉 for each temperature T, from which the power spectral density of 

magnetization noise 𝑆𝑀(𝜔, 𝑇) ≡ 𝐶0
2𝑆𝑉(𝜔, 𝑇) is derived using  

                                                    𝑆𝑀(𝜔, 𝑇) ≡ 𝑙𝑖𝑚
𝒯→∞

1

𝜋𝒯
|∫ 𝑀(𝑡)𝑒 −𝑖𝜔𝑡𝑑𝑡

𝒯

2

−
𝒯

2

|

2

                       (M11)  

 
Magnetic Susceptibility Analysis 
To calculate the AC Susceptibility, it is convenient to first define a pre-factor 𝐹1 = 𝐶𝜒(2𝐿𝑝 +

𝐿𝑖)/ℳ𝑖 for converting the SQUID output voltage to magnetic flux in the pickup coil. Cχ = 
0.0073 V/ϕ0 is a value intrinsic to the SQUID electronics, while 𝐿𝑝 = 0.71 μH and input coil 

𝐿𝑖 = 1.74 μH represent the inductances of the pickup coil and input coil respectively. ℳ𝑖 =
1.1 × 10−8 ϕ0/μA represents the mutual inductance of the SQUID circuitry (Supplementary 
Fig. 2). To then convert flux to B-field, we define a second pre-factor 𝐹2 = 𝛷0/𝑁𝐴𝐹. 𝑁 = 16 
is the total number of turns in the pickup coil, 𝐴 = 3.843 × 10−6 m2 is the cross-sectional 
area, 𝐹 = 0.57 is the filling factor, while Φ0 = 2 × 10−15 Wb is the flux quantum. At each 
frequency several in-phase (X) and out-of-phase (Y) voltage values are collected from the 
Lock-In, from which average values 𝑉𝑥 and 𝑉𝑦 are calculated. Quantitatively accurate real and 

imaginary magnetic susceptibilities are then found using 

      𝜒′(𝜔, 𝑇) =
𝑉𝑥(𝜔,𝑇)

𝐵𝑚𝑜𝑑
(

1

𝐹1𝐹2
)                                                  (M12) 

     𝜒′′(𝜔, 𝑇) =
−𝑉𝑦(𝜔,𝑇)

𝐵𝑚𝑜𝑑
(

1

𝐹1𝐹2
)                                                   (M13) 

𝜒′ and 𝜒′′  are fitted to the HN equations M2 and M3 respectively and presented in 
Supplementary Fig. 3 with the quality of the fits indicated by the inset.  
 
4. Ergodicity Measurements from Fluctuation-Dissipation Theorem Analysis 
Examining Ergodicity of the Monopole Fluid 
If Fluctuation-Dissipation Theorem (FDT) holds for Dy2Ti2O7, the magnetization noise 
𝑆𝑀(𝜔, 𝑇) is directly related to the imaginary AC susceptibility 𝜒′′  by  

    𝑆𝑀(𝜔, 𝑇) =
2𝑘B𝑇

𝜔𝜋𝑉𝜇0
χ′′(𝜔, 𝑇)                            (M14) 

wherein SI units are used throughout so that χ′′(𝜔, 𝑇) is unitless. Using measured 𝑆𝑀(𝜔, 𝑇) 
and χ′′(𝜔, 𝑇), the left-hand side of M14 is plotted against the right-hand side for frequencies 
in the range 0.3 − 2000 Hz (Supplementary Fig. 4).  Each temperature, differentiated by 



color in Fig. 1C, contains several points on the curve corresponding to the frequencies used 
in the experiment. To quantify the validity of the FDT, a ratio 𝑋(𝜔, 𝑇) is defined as 

     𝛸(𝜔, 𝑇) =
2𝑘B𝑇

𝜔𝜋𝑉𝜇0

𝜒"(𝜔,𝑇)

𝑆𝑀(𝜔,𝑇)
                                                         (M15) 

Where 𝛸 ≈ 1, the FDT is obeyed and 𝑋 < 1 indicates a violation of FDT due to a loss of 

ergodicity of the system. To show the temperature evolution,  𝑋(T) is now defined from 

𝛸(𝜔, 𝑇) averaged over all experimental frequencies. 𝑋(T) is shown in Fig. 5Cii.  
 
5. Analysis of Time-Resolved Monopole Noise 
Flux at Pickup Coil from SQUID Output 
The SQUID output voltage signal 𝑉(𝑡, 𝑇) is recorded with 10 μs precision. 𝑉(𝑡, 𝑇) is calibrated 
by the design of the circuit (Fig. 1a) to accurately measure the flux produced by the Dy2Ti2O7 
crystal as it threads the pickup coil 𝜙𝑝(𝑡, 𝑇) as in M9. A typical 𝜙𝑝(𝑡, 𝑇) signal is shown as 

green dots in Fig. 3a. For reference, the noise picked up purely by the circuitry (no Dy2Ti2O7 
sample) is shown in black. 
 
Magnetic Monopole Current 
The monopole current 𝐽(𝑡, 𝑇) is related to the flux 𝜙𝑝(𝑡, 𝑇) by 

     𝐽(𝑡, 𝑇) ≡ �̇�𝑝(𝑡, 𝑇)/𝜇0                (M16) 

When calculating the time derivative of a noisy 𝜙𝑝(𝑡, 𝑇) signal, an 80 μs boxcar average is 

first applied to suppress artifacts that may arise from numerical differentiation. The 
derivative 𝜙�̇�(𝑡, 𝑇)  is calculated using the Finite-Difference Method: 

     𝜙�̇�(𝑡) =
𝜙𝑝(𝑡+∆𝑡)−𝜙𝑝(𝑡−∆𝑡)

2∆𝑡
               (M17) 

Finally using M16 𝐽(𝑡, 𝑇) is calculated. Once calculated, we consider the magnitude of current 
noise |𝐽(𝑡, 𝑇)|, and we observe no net current. In particular, the distribution of occurrence 
rate 𝑟|𝐽|, is calculated by considering the number 𝜂(|𝐽|) of times a given current magnitude 

|𝐽| occurs in a fixed time interval I: 𝑟|𝐽| = 𝜂(|𝐽|)/𝐼. Further analysis examines the mean of 

monopole current magnitudes |𝐽| versus temperature T. Results of the novel analysis of the 
magnitude of monopole current |𝐽(𝑡, 𝑇)| are presented in Fig. 2. Although not apparent in 
Fig. 2b, two types of monopole current occur within this current distribution. Rearranging 
M16 the relation which directly relates 𝐽(𝑡) to changes in the flux 𝜙𝑝(𝑡) is 

      𝜇0 ∫ 𝐽(𝑡′)
𝑡𝑓

𝑡𝑖
𝑑𝑡′ = 𝜙𝑝(𝑡𝑓) − 𝜙𝑝(𝑡𝑖)                    (M18) 

This means that intense current bursts existing over extended time periods produce 
excursions in 𝛷𝑝(𝑡) far larger than those generated by conventional monopole noise. This 

effect is seen directly in histograms of  |𝛷𝑝(𝑡)| as show in ED Fig. 5. 

 
Energetics: Continuous Distribution of Energies 
To understand the energy scales of the monopole phenomena, the relation  
     𝜀(𝑡) ≡ 𝛷𝑝

2(𝑡, 𝑇) 2𝐿p  ⁄      (M19) 

is used.  From Fig. 3b it can be seen that current bursts, which are large collective increases 
in the flux always followed by a collective reversal, typically occur on timescales of order 
~1 ms, an averaging is applied to the signal - again an 80 μs boxcar average to suppress 
numerical artifacts. The smoothed, continuous 𝛷𝑝

2(𝑡, 𝑇) signal (Supplementary Figs. 6b and 



6c) is converted to energy using M19. Analogous to the current, the distribution of the 
occurrence rate 𝑟(𝜀, 𝑇) is calculated by considering the number 𝑚(𝜀) of times a given energy 
𝜀 occurs in the continuous energy signal within a fixed time interval I: 𝑟(𝜀) = 𝑚(𝜀)/𝐼. The 
striking emergence of a second gaussian distribution in the range 250 mK ≲ 𝑇 ≲ 1500 mK, 
corresponding to the emergence of current bursts in the 𝛷𝑝

2 signal, prompted further 

analysis: examining the mean energies of each gaussian noise source. To do so, a given 𝑟(𝜀, 𝑇) 
distribution is fit to a bi-modal model, where the overall distribution is represented by the 
sum of two unique gaussian functions 

   𝜀𝑀 + 𝜀𝐵 = 𝐴𝑀 exp (−
(𝜀−𝜀𝑀̅̅ ̅̅ )2

2𝜎𝑀
2 ) +  𝐴𝐵exp (−

(𝜀−𝜀𝐵̅̅̅̅ )2

2𝜎𝐵
2 )   (M20) 

Here the subscript M denotes the noise produced by conventional monopole generation-
recombination noise and subscript B denotes the noise produced by transient bursts of 
monopole current. In the cases where this model fails (i.e. one of the distributions goes to 
zero, or the two gaussians are almost completely overlapping), we infer that the current 
bursts are no longer present in the signal. Results of the novel analysis of the continuous 
distribution of energies are presented in Fig. 4. 
 
Energetics: Distribution of Burst Maxima 
The maximum energy of each event is analyzed in an attempt to gain further understanding 
of the underlying physics governing the monopole current bursts. To find the local maxima 
in 𝛷𝑝

2(𝑡, 𝑇) and subsequently the local maxima in energy E, the 𝛷𝑝
2(𝑡, 𝑇) signal is filtered by 

applying a Savitsky-Golay filter (Degree 15, Frame Length 51) and then differentiate using 
the same method as M17. Here the maxima of the 𝛷𝑝

2(𝑡, 𝑇) signal are of primary concern, in 

particular their locations in time so the use of a filter is purely to suppress numeric artifacts. 

The zeroes of the function 𝛷𝑝
2̇ (𝑡, 𝑇) represent the locations in time of the maxima of 𝛷𝑝

2(𝑡, 𝑇). 

The 𝛷𝑝,max
2  values at these zeroes are found (Supplementary Fig. 6c) and finally converted to 

energy E by 
     𝐸 ≡ 𝜙𝑝,max

2 (𝑡, 𝑇) 2𝐿p ⁄                                 (M21) 

The distribution of the occurrence rate 𝑅(𝐸, 𝑇) is calculated by considering the number 𝑛(𝐸) 
of times an energy maximum with energy E occurs in the continuous energy signal within a 
fixed time interval I: 𝑅(𝐸) = 𝑛(𝐸)/𝐼. As shown in Fig. 4a, there is an unambiguous 
𝑙𝑛(𝑅(𝐸, 𝑇)) ∝ −𝐸 relationship, prompting further discussion of Boltzmann statistics being 
at play in the current burst energy landscape. 
 
6. Thermal Statistics of Energy States 
Toy Model 
We first consider a heuristic model for thermally activated transitions through a Potential 
Energy Landscape1,2,6,19-23 describing heterogeneous monopole-spin configurations with 
energy E. The probability of a monopole current burst producing a transition between states 
separate by E is then given by: 

                                                                  𝑃(𝐸, 𝑇) = 𝑁(𝑇) exp (
−𝐸

𝑘𝑇
) /𝑍                  (M22) 

In this model, 𝑁(𝑇) = 𝑁exp (
−Δ

𝑘𝑇
) is the total number of monopoles in the sample at 

temperature T and 𝑍 is an unknown partition function of dynamical heterogeneity states. 
Taking the logarithm of M21 gives: 



                                                          𝑙𝑛𝑃(𝐸, 𝑇) = Const − ln 𝑍 − (𝛥 + 𝐸)/𝑘𝑇   (M23) 
Plotting  𝑙𝑛𝑃(𝐸, 𝑇) versus 𝐸/𝑘𝑇 as in Fig. 4b allows for the examination of the energy 
dependence of P(E, T) by defining 
     𝛿(𝑇) = −𝜕𝑙𝑛𝑃(𝐸, 𝑇)/𝜕(𝐸/𝑘𝑇)                (M24) 
Hence it is expected that 𝛿(𝑇)~1 for temperatures where the model approximately describes 
the data. The full temperature dependence of the ln𝑅(𝐸, 𝑇) vs 𝜀 is shown in Supplementary 
Fig. 7.  
 
7. Monopole Noise Power Law 
Fitting 
The magnetization noise power spectrum floor, as measured using an empty pickup coil, is 
first subtracted from the measured Dy2Ti2O7 magnetization noise. The resulting 
magnetization noise spectrum 𝑆𝑀 reveals the true contribution to the magnetization signal 
from the monopoles. The magnetization noise spectrum 𝑆𝑀 is fitted using a least-squares 
method to the standard equation 

        𝑆𝑀(𝜔, 𝑇) =
𝜎𝑀

2 𝜏(𝑇)

(1+(𝜔𝜏(𝑇))
𝑏(𝑇)

)
                                               (M25) 

in the frequency range 0 − 10,000 rad/s. For optimal fitting, only data greater than two times 
above the level of the noise floor are included in the fit. The power law exponent 𝑏(𝑇), 
relaxation time 𝜏(𝑇) and magnetization variance 𝜎𝑀

2 (𝑇) are free parameters of the fit. The 
quality of fit is indicated by the inset of Supplementary Fig. 8.  Fig. 5Civ shows the 
temperature dependence of the monopole noise power law 𝑏(𝑇); a sharp decrease from the 
predicted 𝑏 = 1.5 towards 𝑏 = 1 is seen in the T → 0 limit. 
 
8. Dynamical Monopoles as 𝑻 → 𝟎 
Trapped Monopoles 
To estimate the fraction of monopoles with apparently persistent dynamics in Dy2Ti2O7 at 

low temperatures approaching 10 mK, we first calculate the variance 𝜎Φ
2 = 〈ϕp

2〉 − 〈ϕp〉2 

from the flux time series data. This is shown in Fig. 5Cv. The noise fraction of monopoles 
𝑓𝜎2(𝑇) is given by 

       𝑓𝜎2(𝑇) ≈
𝜎Φ

2 (𝑇)

𝜎Φ
2 (1.5𝐾)

                                                               (M26) 

In the 𝑇 → 0 limit, the measured 𝑓𝜎2  tends to 10% ± 3% (Supplementary Fig. 9). Magnetic 
monopoles, with a spin flip energy cost ∆ ≈ 4.35 K, occupy Dy sites with a number density53 

      𝜌𝑁(𝑇) =
2exp (−∆/𝑇)

1+2exp (−∆/𝑇)
     (M27) 

Thus 𝜌𝑁(𝑇 → 0) tends to 𝜌𝑁(𝑇 = 1.5𝐾)√𝑓𝜎2  , or 2% of all Dy sites  This phenomenon is 

common to all Dy2Ti2O7 samples in our study. 
 
9. Dy2Ti2O7  Samples 
Sample Growth 
The single crystal Dy2Ti2O7 samples are grown by floating zone method. High purity 
(99.99%) Dy2O3, and TiO2 are mixed and heated to 1400 °C for 40 hours. The mixture is 
ground immediately, then heated for 12 hours. The resulting powder is packed into a rod, 
then sintered at 1400° C for 12 hours.   A long piece of the sintered rod is used as a feed rod 
while a small piece is used as the seed. The crystals are grown in 0.4 MPa oxygen pressure at 



4 mm/hour using a two-mirror NEC furnace where the feed and seed rods are counter-
rotated at 30 rpm.  
 
Repeatability 
This sequence of experiments was repeated with multiple different Dy2Ti2O7 samples. 
Modulo their different sizes, all samples produced equivalent phenomenologies 
(Supplementary Fig. 9). 
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Supplementary Figure 1: Divergent linear-response relaxation time of Dy2Ti2O7. 

 

The linear-response relaxation time 𝜏 measured by fitting our magnetization noise SM (black 

circles) and AC susceptibility 𝜒" (black squares) is compared to related measurements in the 

literature (coloured symbols) and found to be consistent with previously reported values. 

Below 𝑇 ≈ 500 mK, 𝜏 becomes inaccessible to linear-response experiments due to its 

divergent behavior approaching 𝑇0 = 240 ± 30 mK. 
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Supplementary Figure 2: Experimental setup. 

 

The schematic of our combined monopole noise spectrometer and AC susceptometer.  The 

circuit diagram illustrates the simultaneous monopole flux-noise and AC susceptibility 

measurement.  

  



  

Supplementary Figure 3: Frequency and temperature dependence of the AC susceptibility.  

 

a) The real component of the magnetic AC susceptibility 𝜒′(𝜔, 𝑇) is fitted to its parametric 

equation M2. Below 500 mK the fit fails (𝑅2 < 0.95). b) The imaginary component of the 

magnetic AC susceptibility 𝜒′′(𝜔, 𝑇) is fitted to its parametric equation M3. The evolution of 

the monopole linear-response relaxation time is reflected clearly by the shift of the peak in 

𝜒′′(𝜔, 𝑇) towards lower frequencies as the temperature is decreased. Below 500 mK, where 

the peak is no longer in our experimental window, the fit fails (𝑅2 < 0.95). Data that cannot 

be parametrized by M3 are included in Supplementary Fig. 4. 
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Supplementary Figure 4: Loss of ergodicity in Dy2Ti2O7.  

 

a) Magnetization noise SM at 100 mK, 200 mK, 300 mK, 400 mK, 500 mK, and 620 mK. Each 

curve shows magnetization noise data at the corresponding frequencies to the susceptibility 

measurements in the next panel. The error in the noise is less than 1% of the signal in all 

cases, so the error bars are not included beyond this panel. b) Imaginary susceptibility χ” at 

the same temperatures as panel a). The experimental noise floor is plotted at the base of the 

figure. c) The left-hand side of the fluctuation-dissipation relation M14 (Y) is compared 

against the right-hand side (X). One data point at each temperature is represented by an ‘X’ 

as a guide to the eye. The same points are highlighted in panel a) and b) to identify the pair 

of unprocessed noise and susceptibility values yielding that data point. At temperatures 

below 300 mK, a violation of the fluctuation-dissipation theorem is observed, as the linear 

relationship between the simultaneously measured magnetization noise and imaginary 

susceptibility fails. 
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Supplementary Figure 5: Emergence of two maxima in the monopole current  

 

Typical histograms of |𝜙𝑝(𝑡)|. Conventional monopole current with a single Gaussian 

distribution persists until T ≈ 1500 mK. A second current source, due to intense monopole 

current bursts appears below this temperature resulting in a bimodal distribution of 

probabilities. Below T ≲ 250 mK the current bursts disappear. 
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Supplementary Figure 6: Extracting Energies from Typical Flux Time Series. 

 

Note that ϕp2 and energy are considered equivalent here due to their linear relationship as 

described in equation M19. a) A typical flux signal ϕp measured at 700 mK. b) The square of 

the flux signal ϕp2 is calculated and the signal is then averaged in a 80 μs window. The 

averaged signal is layered on top of ϕp2. c) The averaged signal is numerically differentiated 

and the maxima are found and shown above. d) The same routine is applied to the empty coil 

signal. The flux signal is considerably reduced in the empty coil data.  
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Supplementary Figure 7: Boltzmann statistics of monopole burst energies.  

 

The full temperature dependence of the monopole current bursts shows first an increase in 

the burst energies which begins upon entering the supercooled regime from the free 

monopole regime (decreasing in temperature). Then, there is a  collapse of burst events as 

temperature further decreases within the supercooled regime. And finally the low-

temperature boundary of dynamical heterogeneity, begins at temperatures below 300 mK. 
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Supplementary Fig 8: Temperature and frequency dependence of fitted magnetization noise 

SM. 

 

Fitted magnetization noise power spectral density 𝑆𝑀(𝜔, 𝑇) data versus 𝑇. The noise is well 

described (𝑅2 > 0.95) by monopole generation/recombination above 300 mK. Below this 

temperature, fits are excluded. 
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Supplementary Figure 9: Comparison of phenomenologies from different samples. 

 

Each sample studied in this work produced the same phenomenologies, demonstrating 

qualitative repeatability of the experiment. Changes in magnitude of the noise can be 

attributed to geometric differences between samples.  
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