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Abstract

We review the physics of pair density wave (PDW) superconductors.

We begin with a macroscopic description that emphasizes order induced

by PDW states, such as charge density wave, and discuss related vesti-

gial states that emerge as a consequence of partial meting of the PDW

order. We review and critically discuss the mounting experimental ev-

idence for such PDW order in the cuprate superconductors, the status

of the theoretical microscopic description of such order, and the current

debate on whether the PDW is a “mother order” or another competing

order in the cuprates. In addition, we give an overview of the weak cou-

pling version of PDW order, Fulde-Ferrell-Larkin-Ovchinnikov states,

in the context of cold atom systems, unconventional superconductors,

and non-centrosymmetric and Weyl materials.
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1. INTRODUCTION

A pair density wave (PDW) is a superconducting state in which the order parameter varies periodically as a

function of position in such a way that its spatial average vanishes. It is a phase of matter defined in terms

of broken symmetries (1, 2, 3, 4, 5, 6, 7). In this review, we characterize the macroscopic properties of such a

state precisely and discuss the status of the (incomplete) theoretical understanding of the sorts of lattice-scale

interactions that give rise to it (the “mechanism”), how it is distinct from other phases with which it shares

certain features, and the way in which the partial melting of the PDW can give rise to daughter phases with a

variety of patterns of vestigial order. In addition to its intrinsic interest, there is now evidence that significant

(although probably not long-range correlated) PDW order exists in at least some regions of the phase diagram

of the cuprate high temperature superconductors. We critically review this evidence, and then speculate on

the broader significance of these sightings to the understanding of broader issues in the physics of the cuprates.

We also discuss other strongly correlated systems, including other unconventional superconductors, certain

cold atom systems, and carefully engineered mesoscopic devices, in which PDW and PDW-related states play

an important role.

In a time-reversal- and inversion-invariant Fermi liquid (FL), the superconducting (SC) susceptibilities

χsc(q, T ) at q = 0 diverge as the temperature lowers towards a critical value. Under some circumstances,

there can be a local maximum in χsc(q) at non-zero q, but it is always smaller than χsc(0). Weak breaking of

time-reversal symmetry can change the situation. For example, in the presence of a Zeeman magnetic field, the

T → 0 divergence of χsc(0) is cut off with the result that the maximum of χsc can occur at a wavenumber with

|q| ∼ εZ/vF where the Zeeman energy is εz = gµBH and vF is the Fermi velocity. While there is no longer

a strict instability to a superconducting state at arbitrary weak interactions, under some circumstances such

a system can form a finite q superconducting phase at low T . This is the long-sought Fulde-Ferrell-Larkin-

Ovchinnikov (FFLO) phase (1, 2), which (as we briefly review) has been plausibly shown to exist in certain

materials and cold-atom systems.

However, it has been conjectured that, for systems in which the interactions are not weak, a PDW could

occur independent of any explicit time-reversal symmetry breaking. In that it does not necessarily break time-

reversal symmetry, the PDW is thermodynamically distinct from an FFLO state; that the spatial average of the

superconducting order vanishes distinguishes the PDW from a less exotic phase with simply coexisting charge

density wave (CDW) and SC order. However, while it is straightforward to examine the phenomenological

consequences of the existence of a PDW in terms of the standard methods of effective field theory, developing

a microscopic theory has proven challenging. It is not favored at weak coupling and a treatment of the strong

coupling problem faces obvious challenges. In this review we focus on the phenomenological aspects and

comment briefly on the microscopic models in section 5.

Thus, this is less a review of a well-settled subject than a progress report on an interesting, rapidly

developing subject. The experimental evidence – especially in the cuprates – is sufficiently dramatic that it

cannot be ignored. However, there is not yet the web of consistent evidence from a wide variety of experiments

that one would ideally count on to establish the correctness of any particular perspective on the properties

of such complex materials. This, combined with the absence of a reliable microscopic theory means that a

portion of the discussion is necessarily speculative. I is part of what makes the subject so exciting.
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2. PHENOMENOLOGICAL THEORY

2.1. Phenomenological Theory: Ginzburg-Landau-Wilson formulation

The simplest cartoon of a PDW state is one in which the gap function varies sinusoidally as ∆(x) ∼ cos(P ·x).

As reviewed in section 3, a state with this spatial dependence and a periodicity of a few lattice spacings

was proposed to occur in the cuprate superconductors. This is similar to the expected FFLO states when a

Zeeman magnetic field is applied to a usual, weak-coupling, spin-singlet superconductor (2, 1): the Larkin and

Ovchinnikov (LO) state has a similar spatially modulated magnitude while the Fulde-Ferrell (FF) state has a

constant magnitude but spatially varying phase, i.e. ∆(x) ∼ eiP·x.(8, 9). As noted in the introduction, FFLO

phases differ from other PDW states in that, reflecting their origin, they have finite magnetization and long,

field dependent periodicities that are many times the superconducting coherence length. However, though it

does not seem to have been emphasized in the previous literature, the same sort of induced subsidiary orders

should be expected in an LO state as in a simple PDW, so we will treat the two sorts of states simultaneously

here.

In general, a PDW state has secondary orders whose existence is dictated by symmetry. These induced

orders have played an important role in understanding the relevance of PDW order in the cuprates (4, 5, 6,

10, 7, 11, 12, 13, 14). Primary among these is charge density wave (CDW) order. In addition to exhibiting

an induced CDW order, this unidirectional PDW state also has nematic and spatially uniform charge 4e

superconducting orders. These induced order parameters can develop long range order when the original PDW

order does not; the induced order is then often called vestigial order (15). Observation and understanding of

this induced order is central to understanding the underlying PDW state. In this section, using a Ginzburg-

Landau-Wilson (GLW) approach, we illuminate different types of PDW ground states, the accompanying

induced order, and the topological excitations of these states. Because the PDW order breaks translation

symmetry in addition to the usual particle number conservation, the topological excitation spectrum is richer

than in usual superconductors. Key to this section is that we assume the existence of an underlying lattice

that breaks rotational symmetry. This condition is not true in the context of cold atoms and this gives rise to

different physical properties which are discussed in section 5.

To be concrete, motivated by the cuprates, we consider a tetragonal system with square lattice sheets

stacked along the z-axis. We will consider PDW order that exhibits spatial modulations along the in-plane

x̂ direction. The modulations will be assumed to be incommensurate with the lattice. Tetragonal symmetry

dictates that the PDW order parameter has four complex degrees of freedom with momenta ±Px and ±Py,

the corresponding order parameter is written as ∆i = {∆Px ,∆Py ,∆−Px ,∆−Py}. These order parameters are

coupled to fermions via

HP = ∆P

∫
dkF (k)c†k+P/2c

†
−k+P/2 1.

where F (k) is an internal form factor. Note that the form factor is not a representation of a symmetry group

and different form factors, e.g. s-wave, d-wave, can mix (12). Here, for concreteness, we take a s-wave form

factor, so that ∆P =
∑

k g〈c−k↓ck+P↑〉 (where g is the interaction constant) since different form factors do

not alter the essential results discussed in this section, as discussed in Ref. (16). The form of the GLW theory

then follows from how these order parameters transform under various internal and spatial symmetries. Here

we do not write all such symmetry operations and refer to Ref. (16) for a more detailed discussion of these.

However, it is worthwhile highlighting some key symmetries that help to understand the additional orders that

are induced by the PDW order. In particular, under a lattice translation T , the PDW order transforms as

∆P → eiT ·P∆P. Under time-reversal (T ) and parity (P) symmetries we have:

∆P
T−→ (∆−P)∗ ∆P

P−→ ∆−P. 2.

The GLW energy density consistent with time-reversal, parity, space group, and gauge symmetries is (5, 15)

H = α
∑
i |∆Pi |2 + β1(

∑
i |∆Pi |2)2 + β2

∑
i<j |∆Pi |2|∆Pj |2 + β3(|∆Px |2|∆−Px |2 3.

+|∆Py |2|∆−Py |2) + β4[∆Px∆−Px(∆Py∆−Py )∗ + (∆Px∆−Px)∗∆Py∆−Py ].

The parameters βi depend upon the specific microscopic model. Depending on which values are found for these,

one of five possible ground states can be realized. These five phases include the following: the FF-type phase

with only one momentum component, the FF∗ phase which is a bidirectional version of the FF-type phase,

the LO type which include pairing with opposite momentum components: these include the unidirectional

phase, and the bidirectional-I (II) phases which have a phase factor of 0 (π/2) between the two unidirectional

components. These five states give rise to different patterns of induced order, providing a means to distinguish

them. We now turn to these induced orders.

Induced Order Parameters

www.annualreviews.org • The Physics of Pair Density Waves 3
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Figure 1

Panel (a): Schematic real-space illustration of a unidirectional PDW state (blue and green stripes) with ∆±P its
induced CDW state (orange stripes) ρQ=2P. The PDW order parameter change sign in alternate domains and

vanishes at the domain walls, while the local density of states is enhanced at the domain walls. The local density of
states has a CDW pattern with half the wavelength of the PDW. Panel (b): The PDW half vortex, around which the

local SC phase winds by π, bound with a CDW dislocation. Abbreviations: CDW, charge-density wave; PDW:

pair-density wave; SC: superconducting.

Phase (∆Px ,∆Py ,∆−Px ,∆−Py ) Induced Orders

FF-type (eiφ1 , 0, 0, 0) lx, εx2−y2

FF*-type (eiφ1 , eiφ2 , 0, 0) lx = ly
ρPx−Py , Mz

Px−Py

Unidirectional (eiφ1 , 0, eiφ2 , 0) εx2−y2 , ∆4e

ρ2Px

Bidirectional-I (eiφ1 , eiφ2 , eiφ3 , ei[φ1+φ3−φ2]) ∆4e

ρ2Px , ρ2Py ,ρPx−Py , ρPx+Py

Bidirectional-II (eiφ1 , ieiφ2 , eiφ3 , iei[φ1+φ3−φ2]) ∆4e

ρ2Px , ρ2Py Mz
Px−Py

,Mz
Px+Py

Table 1 PDW Ground States. Distinct PDW ground states and accompanying induced orders. In the

third column, other modes can be found by using the relationships ρQ = (ρ−Q)∗ and Mz
Q = (Mz

−Q)∗.

In the context of the cuprates, Ising nematic and CDW order have been the most important of the induced

orders. Since the induced CDW order appears often in this review, we discuss it first. CDW order (ρQ)

preserves time-reversal and breaks translation symmetry and, given two superconducting order parameters

with different pair density momenta, the CDW order is generally induced as (5, 6, 7, 17)

ρPi−Pj ∝ (∆Pi∆
∗
Pj

+ ∆−Pj ∆∗−Pi
) 4.

where the second term follows from time-reversal invariance. Two important examples of this are i) in the

unidirectional PDW state ρ2P ∝ ∆P∆∗−P (see Fig. 1a for a real space illustration; note time-reversal symmetry

transforms this term into itself) and ii) when one of the superconducting order parameters is translation

invariant, then ρP ∝ (∆0∆∗−P + ∆P∆∗0) where ∆0 is a usual translation invariant superconducting order. The

PDW ground states that are most often discussed with respect to the cuprates are the unidirectional and the

bidirectional-II PDW states. This is because these states exhibit CDW order at momentum 2Px and none at

momentum Px + Py, which is consistent with experiment.

4 Agterberg et al.



Now we turn to the other induced orders. Ising nematic order (εx2−y2) that breaks rotational 4-fold

symmetry is given by εx2−y2 ∝ (|∆Px |2 + |∆−Px |2 − |∆Py |2 − |∆−Py |2) (6, 17). Magnetization-density wave

(MDW) order (Mz
Q), which arises from spatially modulated orbital loops currents is given by Mz

Pi−Pj
∝

i(∆Pi∆
∗
Pj
− ∆−Pj ∆∗−Pi

) (5, 7). Translation invariant charge-4e superconducting order (∆4e) is given by

∆4e ∝ ∆P∆−P (17, 10). Uniform charge-4e superconducting order, a state with hc/4e flux quantization, can

occur if the CDW stiffness of the PDW state is sufficiently weak (10), or in continuum systems (where the

stripe order melts at any temperature) (18, 19). It may also arise in PDW states with quenched disorder (20).

Loop current order (li), which is odd under both time-reversal and parity symmetries, but preserves translation

symmetry is given by li ∝ (|∆Pi |2−|∆−Pi |2) (11). The induced orders appearing in the different PDW ground

states are shown in Table 1.

Topological excitations

Just as gauge invariance of the action implies the existence of vortices in usual superconductors, gauge and

translation invariance of the Hamiltonian in Eq. 3. imply topological excitations in PDW superconductors. Due

to breaking of translation symmetry, these PDW topological excitations can exhibit properties that are quite

different from usual superconducting vortices. This is reflected in the appearance of multiple U(1) symmetries

that appear in most PDW ground states. Gauge and translation symmetries allow PDW ground states to have

up to three U(1) symmetries (one from usual gauge invariance and one each from translation invariance along

the x̂ and ŷ directions). In Table 1, these U(1) symmetries are given by the phase factors φi, which are are not

determined by minimizing the action. These undetermined phases lead to Goldstone modes, in particular new

modes associated with translational symmetry breaking. These modes are discussed in more detail in section

5.2. A winding in one or some of these φi gives rise to the topological excitations.

Physics associated with topological excitations is discussed in detail in Refs. (5, 7, 10, 17). Here we focus

on the unidirectional (LO) state, which is sufficient to capture the key new physical properties associated with

these vortices. Writing (∆Px ,∆Py ,∆−Px ,∆−Py ) = ∆(eiφ1 , 0, eiφ2 , 0)/
√

2, we allow (φ1, φ2) to have a phase

winding of (n,m) times 2π respectively. These we call these (n,m) vortices. These vortices are most simply

described by the following London theory

HL =
1

2

∑
i=x,y,z

{
ρs,i[(∇iφ1 − 2eAi)

2 + (∇iφ2 − 2eAi)
2] +B2

i

}
5.

where ρs,i give the superfluid stiffness along these three directions (it is generally anisotropic) and the magnetic

field B = ∇×A. Eq. 5. gives rise to a supercurrent with components Ji ∝ ρs,i[∇i(φ1 +φ2)/2−2eAi]. Far from

the core of the vortex, the minimum energy configuration has non-zero supercurrent, and a contour integration

of this supercurrent then implies that the flux enclosed in a (n,m) vortex is (n + m)Φ0/2, n and m being

the winding number in φ1 and φ2. Consequently, (1, 0) vortices enclose half the usual flux quantum. (5) In

this description, (1, 1) vortices are the usual single flux quantum Abrikosov vortices. Eq. 5. shows that these

usual superconducting vortices typically have the lowest energy because the phase winding can be completely

screened by the vector potential, implying that they have a finite energy per unit length. Fractional or zero-flux

vortices have an energy per unit length that diverges as the logarithm of the cross sectional system size.

An examination of the induced CDW order near a Φ0/2 (1, 0) vortex sheds insight into their physical origin.

In particular, the relationship ρ2P ∝ ∆P∆∗−P reveals that a dislocation appears in the CDW order due to the

phase winding in ∆Px . Since this CDW order has half the periodicity of the PDW order, a dislocation in the

CDW order corresponds to half a dislocation in the PDW order. Consequently, the half-flux vortex can be seen

as a half-dislocation combined with a π phase winding in the PDW order [see Fig. 1(b)]. The Φ0/2 vortices

of the other PDW phases have a similar origin. A generic prediction is that a PDW superconducting vortex

containing a half-flux quantum will be pinned to a dislocation in the induced CDW order.

These (n,m) vortices can have some notable physical consequences (5, 7, 10, 17). One example is in

fluctuation driven vortex physics in two dimensions (21, 22, 23). In particular, it possible that the lowest

energy vortex is not a Φ0/2 (1, 0) vortex but either a (1, 1) Abrikosov vortex or a (1,−1) PDW dislocation.

At a vortex unbinding transition, the lowest energy vortices will proliferate, leading to a phase that no longer

has PDW order, but has vestigial order in one of the induced order parameters. In the case that the (1, 1)

Abrikosov vortices proliferate (these can be the lowest energy vortices due the presence of the vector potential),

the resultant phase will have only CDW order with wavevector twice the PDW wavevector (24, 5). In the case

that (1,−1) PDW dislocations proliferate, the resultant phase will be a charge 4e superconductor (10, 17). As

discussed in section 5.2, this case is particularly relevant in the context of cold atoms because of rotational

symmetry.

www.annualreviews.org • The Physics of Pair Density Waves 5



Figure 2

A sketch of the top half of the Brillouin zone for the Cuprates with the Fermi surface shown in blue. Pairing of the
electrons as indicated form PDW’s with momenta ±2K after Umklapp. Figure adapted from Reference (7).

2.2. Coupling of PDW to uniform superconducting order

The interpretation of a key cuprate experimental result (14) in the context of PDW order requires an under-

standing of the coexistence of PDW order with usual superconducting d-wave order (∆d). Here we present the

simplest coexistence term that allows this to be addressed in zero magnetic field (an extension to finite field

will be discussed later). In zero field, the lowest order coupling term is given by

Hc =βc1
∑
i

|∆d|2|∆Pi |
2 + βc2[∆d

2(∆Px∆−Px + ∆Py∆−Py )∗

+ (∆d
2)∗(∆Px∆−Px + ∆Py∆−Py )]. 6.

A key feature of this coupling is that the βc2 term can always be made negative by the correct choice of

the relative phases between the PDW and d-wave orders. This has two consequences. The first is that this

coupling prefers the unidirectional (LO) or bidirectional-I PDW states. The second relates to the observation

that coexisting PDW and uniform d-wave orders imply either the appearance of CDW ρP or MDW Mz
P order

at the same momentum as the PDW order. Whether it is CDW or MDW order depends upon the sign of the

coefficient βc2; if this is positive, then MDW will appear, if it is negative then CDW order will appear. Note

that the coupling term βc2 locks the phase of the uniform ∆d order to the unidirectional (LO) and bidirectional

PDW phases and consequently, half-flux quantum vortices will not longer exist. Even if in the ground state

∆d and ∆P do not coexist due to their competition, it is still possible that they coexist near vortices of either

order, where the ground state order parameter is locally suppressed. We refer the reader to Sec. 3.2 for a

review of recent experimental evidence of PDW near SC vortex halos.

There are two further topics that are not discussed here but deserve some attention. The first is the

phenomenological response of the PDW order to static impurities and the second is the consequence of com-

mensurate PDW order. Non-magnetic impurities do not couple directly to the PDW order but couple indirectly

to the PDW through the induced CDW order (6, 20). The primary consequence of this is that for weak disorder,

one expects a destruction of the PDW order since the induced CDW order will be disordered on the Imry-Ma

length scale (thereby removing the PDW periodicity on long scales), resulting in vestigial nematic order (25)

and charge 4e superconducting order ∆4e (20). In addition, disorder can locally nucleate induced orders that

do not generically appear in the PDW ground state of interest (26). In contrast to the above considerations

for incommensurate PDW order, in a PDW commensurate with the lattice potential, the latter gaps out the

PDW phonons (the φ1 − φ2 mode), thereby precluding half-vortex defects (5).

2.3. Bogoliubov spectrum of a pair density wave

Next we review some properties of the momentum-space Bogoliubov spectrum associated with a PDW and

point out a number of features which makes it distinct from uniform pairing. As an illustration we initially

discuss what happens to the cuprate band structure if we impose a unidirectional PDW order with ∆Px ,∆−Px

on it.

In Fig 2, we pair electrons with momenta p and 2K− p to form a PDW with momentum Px = 2K and

similarly for −Px. In this figure K was chosen to be at the Fermi surface, but the features we discuss will be

similar if K moves away from the Fermi surface. Fig 3 shows a cut of the spectrum at ky = π and the solid

black line shows the electron band ε(kx). We illustrate the formation of the Bogoliubov spectrum with the

usual “semiconductor” representation where the dashed line represent the hole spectrum −ε(−kx + Px). The

hybridization of the two bands form the blue, green and red bands. We can estimate the weight of these bands

in a photo-emission experiment by tracking how much of the original solid black band is admixed. For example,

the red band is made up mainly of hole bands and will be almost invisible in angle-resolved photoemission

6 Agterberg et al.



Figure 3

A “semiconductor” picture of the formation of the Bogoliubov band as a function of kx for ky = π. Solid black line is

the original electron dispersion. Dashed lines are the hole bands. Note the shift by the PDW momenta by ±Px. The
blue, green and red lines are the resulting hybridized Bogoliubov bands. Figure adapted from Reference (7).

Figure 4

Plots of the ARPES spectra as a function of kx for several ky measured from π. The red data points are taken in the
high temperature metallic state. The blue data are in the pseudogap phase and the green dots represent additional

features that appeared below the superconducting Tc. Figure adapted from Reference (7).

(ARPES). The first thing to note is that unlike the uniform superconductors, the spectrum is not particle

hole symmetric. This is due to the shift of the hole band by Px. An immediate consequence of this is that

the top of the green band does not line up with the Fermi momentum kF . Fig 4 shows several of scans for

different ky in an experiment performed in Bi-2201. (27) This material is unique in that there is a quite clear

onset of the pseudogap at about 140K while the superconducting Tc is rather low, so that the spectrum can

be mapped out over a wide temperature range covering the high temperature metallic phase, the pseudogap

phase and the SC phase. An important point noticed by the experimentalists is that in the scan for ky = π ,

the top of the low temperature band marked by KG does not line up with the Fermi momentum KF observed

a higher temperature. This was used as an argument against a fluctuating pairing phase as the origin of the

pseudogap, but now we see that this objection does not apply to the PDW. Nevertheless, it is worth noting that

upon averaging over k space to compute the spectrum which is observed by STS experiments, an approximate

particle-hole symmetry can be restored.

A second important observation is that the PDW spectrum naturally has lines of gapless excitations in 2D.

This is in contrast with the uniform SC that can only have nodal points in 2D. While these lines of zero’s form

closed contours, ARPES is dominated by the electron like segments which resemble lines of zero crossing. This

is commonly referred to as “Fermi arcs” and was first discovered by ARPES experiments in the pseudogap

regime. The existence of these arc-like features in the PDW spectrum was pointed out by Baruch and Orgad

(28) and by Berg et al (6). Here we explain how it comes about. Returning to Fig. 3, imagine gradually

moving away from ky = π, following the scans indicated by the horizontal lines in Fig. 2. The black line in

Fig. 3 will move down in energy, but the dashed line will move up. Upon hybridization, the top of the green

line moves up in energy and eventually cross zero, resulting in a gapless excitation. With further decrease of

ky from π these crossings continue and form a closed contour of zero crossings, Most of the electron spectral

weight lies on the crossing for kx closer to the origin. This results in the Fermi arc shown in Fig. 5, the back

side of the closed loop having almost no weight and being invisible invisible. Here the arc has been symmetrized

assuming the co-existence of PDW along both the Px and Py directions.

Finally, let us look at how the zero crossings appear at the ends of the Fermi arc. From our discussion

above it is clear that in the PDW spectrum the zero crossing is formed by an occupied band moving up in

energy to meet the Fermi level. This is also what is seen experimentally in Fig 4. Another candidate for the
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Figure 5

A picture of the Fermi arc of gapless excitations in the PDW state. Figure adapted from Reference (7).

pseudogap is a CDW at momentum Q. While this can certainly open a gap at the anti-node near (0, π), the

gap sits at a fixed momentum kx and as ky moves away from π, the occupied states only move to lower energy

and remain occupied. Therefore, the only way a Fermi arc of gapless excitations can form is for an unoccupied

state to move down in energy. This contrasting behavior between a PDW and CDW driven anti-nodal gap

and Fermi arc was emphasized in Refs. (6, 7). We also point out that if the PDW is bi-directional and the

effect of a composite bi-directional CDW of the type discussed in the last section is added, the Fermi arcs can

be connected by the CDW’s momenta to form electron-like closed Fermi pockets (7, 13). This mechanism

to produce an electron pocket that can explain what is seen in quantum oscillations was first proposed by

Harrison and Sebastian. (29) The advantage of the PDW picture is that the hole pockets that remain near the

anti-nodes in their picture are automatically gapped-out. Similar features in the Bogoliubov spectrum were

obtained with a different version of the PDW state (30), indicating the robustness of the PDW interpretation

of the ARPES spectra. A recent paper studied the spectrum of the PDW in a t − t′ − J model using the

self-consistent Gutzwiller approximation, and reached similar conclusions (31).

In summary, the Bogoliubov spectrum associated with the PDW has several features which stand in strong

contrast to our intuition based on that of the uniform superconductor. These include the lack of particle-hole

symmetry in the spectrum and nodal lines (surfaces) in two (three) dimensions. In the context of Cuprate

superconductors, many of these features are consistent with ARPES results on Bi-2201 which are very difficult

to explain based on CDW, fluctuating d-wave SC, or other conventional pictures (27).

3. CUPRATES

3.1. La2−xBaxCuO4 and related cuprates

The phase diagram of La2−xBaxCuO4, shown in Fig. 6 (LBCO), has an anomalous dip in the bulk super-

conducting Tc at x = 1/8 (32), which is correlated with the appearance of charge and spin stripe orders, as

detected by neutron and x-ray diffraction on single crystals (33, 34). Pinning of the stripes to the lattice is

enabled by structural distortion within the CuO2 layers, such that there is a preferred axis along one of the

Cu-O directions which rotates by 90◦ from one layer to the next (35, 36). The relevant distortion appears

below a structural phase transition labelled TLT in the figure.

For LBCO with x = 1/8, careful measurements of the resistivity within the planes, ρab, and perpendicular

to the planes, ρc, revealed a surprising anisotropy (37, 38). As shown in Fig. 6, cooling below the spin ordering

temperature, Tso, leads to a drop in ρab by an order of magnitude. In contrast, ρc continues to rise through

Tso, eventually turning down at a lower temperature. The drop in ρab at ∼ 40 K appears to correspond to the

onset of 2D superconducting correlations within the CuO2 layers, as confirmed by measurements of anisotropic

diamagnetism (38). Below the transition, ρab continues to decrease, extrapolating to zero at TBKT = 16 K,

where nonlinear transport is observed (37), consistent with a Berezinskii-Kosterlitz-Thouless transition (21, 22);

ρc remains finite down to ∼ 10 K, while bulk susceptibility indicates a bulk superconducting transition at ∼ 5 K.

Related behavior is observed in rare-earth-doped La2−xSrxCuO4, such as La1.6−xNd0.4SrxCuO4 (39), as-

sociated with the same low-temperature structural phase as in LBCO. In particular, a study of the supercon-

ducting state via the c-axis optical reflectivity, measured as a function of Nd concentration (which controls

the structural phase and the degree of stripe order), demonstrated a sharp decrease in interlayer Josephson

8 Agterberg et al.
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stripe order (SO) satellite reflections, the stripe correlations
between the planes, the melting of the stripe order, and the
compatibility with the generic stripe phase diagram. Further-
more, there is a great lack of information for x > 1/8 because
crystal growth becomes progressively more challenging with
increasing x.

These are the issues addressed in the present study on
La2−xBaxCuO4 single crystals with 0.095 ! x ! 0.155. We
have characterized the CO with high-energy single-crystal
x-ray diffraction (XRD), by probing the associated lattice
modulation.13,14,17 That a modulation of the electron density
truly exists has been demonstrated previously in Ref. 19 for
La1.875Ba0.125CuO4 by means of resonant soft x-ray scattering.
We have investigated the SO both in the traditional way, with
neutron diffraction (ND), as well as in a less conventional
way by tracing a recently identified weak ferromagnetic
contribution to the normal state magnetic susceptibility.51

The various structural phases have been studied mostly with
XRD, and to some extent with ND, and the SC phase was
analyzed with shielding and Meissner fraction measurements.
As a result, we obtain the temperature versus Ba-concentration
phase diagram displayed in Fig. 1. One of the key features
is that CO exists over the entire range of x that we have
studied, including the two bulk SC crystals with the lowest and
highest x and maximum Tc on the order of 30 K. According
to our quantitative analysis, the stripe order for these end
compositions is already extremely weak, while it is most
pronounced at x = 1/8. In the underdoped regime the CO
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FIG. 1. (Color online) Temperature vs hole-doping phase dia-
gram of La2−xBaxCuO4 single crystals. Onset temperatures: Tc of
bulk superconductivity (SC), TCO of charge stripe order (CO), TSO

of spin stripe order (SO), and TLT of the low-temperature structural
phases LTT and LTLO. At base temperature CO, SO, and SC coexist
at least in the crystals with 0.095 ! x ! 0.135. For x = 0.155 we
identified CO but not SO, and observe a mixed LTT and LTLO phase.
In the case of x = 0.095, very weak orthorhombic strain persists at
low T . For x = 0.165 we have measured Tc only, before the crystal
decomposed. Solid and dashed lines are guides to the eye. Although
TCO, TSO, and TLT for several x were also determined with XRD and
ND, most data points in this figure are from magnetic susceptibility
measurements. Here, only TSO for x = 0.095 is from ND and TCO

and TLT for x = 0.155 from XRD.

always disappears at the low-temperature structural transition,
and for three crystals we can show that it melts isotropically.
On the other hand, the onset of bulk SC left no noticeable mark
in our CO and SO data.

The rest of the paper is organized as follows: In Sec. II we
describe the experimental methods and the choice of reciprocal
lattice used to index the reflections. In Sec. III we present four
subsections dedicated to our results on crystal structure, CO,
SO, and SC. In Sec. IV we summarize the doping dependence
of the various properties as a function of the nominal and
an estimated actual Ba content, compare our results with the
literature, and in Sec. V finish with a short conclusion.

II. EXPERIMENTAL

A series of six La2−xBaxCuO4 single crystals with 0.095 !
x ! 0.155 has been grown at Brookhaven with the traveling-
solvent floating-zone method. Previously reported results on
some of the compositions, in particular on the x = 1/8 crystal,
have demonstrated a very high sample quality.20,34– 36,44,51– 55

Because the compositions of the single crystals can deviate
from their nominal stoichiometry (see Ref. 56), it has been
vital to measure the structure, stripe order, and SC on pieces
of the same crystal. In Fig. 2(a) we show the unit cell of the
high-temperature tetragonal (HTT) phase, with space group
I4/mmm. Although the supercells of the low-temperature
phases LTO (space group Bmab) and LTT (space group
P 42/ncm) have a

√
2 ×

√
2 larger basal plane rotated by 45◦,

we nevertheless specify the scattering vectors Q = (h,k,ℓ) in
all phases in units of (2π/at ,2π/at ,2π/c) of the HTT cell with
lattice parameters at ≃ 3.78 Å and c ≃ 13.2 Å.57 In order to
express the orthorhombic strain s in the LTO phase, we will
refer to the lattice constants ao and bo of the LTO supercell,
which are larger than at by a factor of ∼

√
2.

The XRD experiments were performed with the triple-axis
diffractometer at wiggler beamline BW5 at DESY.58 To
create optimum conditions for studying the bulk properties
in transmission geometry, most samples were disk shaped
with a diameter (∼ 5 mm) significantly larger than the beam
size of 1 × 1 mm2, and a thickness (∼ 1 mm) close to the
penetration depth of the 100 keV photons (λ = 0.124 Å).
Counting rates are normalized to a storage ring current of
100 mA. To evaluate the x dependence of a superstructure
reflection relative to x = 0.125, we have normalized its inten-
sity with an integrated intensity ratio I (0.125)/I (x) of a nearby
fundamental Bragg reflection. For example, to normalize
the (1,0,0) and (2 + 2δ,0,5.5) reflections, we have applied
the factors I(200)(0.125)/I(200)(x) and I(206)(0.125)/I(206)(x)
of the (2,0,0) and (2,0,6) Bragg reflections, respectively.

The ND data for x = 0.115, 0.125, and 0.135 were
collected with the triple-axis spectrometer SPINS located at the
NIST Center for Neutron Research using beam collimations
of 55′-80′-S-80′-open (S = sample) with fixed final energy
Ef = 5 meV. The x = 0.095 crystal was studied at triple-axis
spectrometer HB-1 at the High Flux Isotope Reactor, Oak
Ridge National Laboratory, using beam collimations of 48′-
48′-S-40′-136′ with Ef = 14.7 meV. The cylindrical crystals,
with a typical weight between 5 and 10 g, were mounted
with their (h,k,0) zone parallel to the scattering plane. Doping
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Figure 6

(Left) Phase diagram for La2−xBaxCuO4, indicating charge order (CO) below Tco (limited by the structural transition
at TLT), spin order (SO) below Tso, and bulk superconductivity (34). (Right) Zero-field-cooled volume susceptibility

(left axis, filled symbols) measured with a field of 2 G oriented parallel to the c-axis (probing in-plane screening) and

perpendicular to c (probing interlayer screening). In-plane resistivity, ρab, and c-axis resistivity, ρc, (open symbols,
right axis), in La2−xBaxCuO4 with x = 1/8. Abbreviations: CO, charge order; LTLO, low-temperature less

orthorhombic; LTO, low-temperature orthorhombic; LTT, low-temperature tetragonal; SC, superconducting; SO, spin

order. Replotted from References (37) and (38).

coupling corresponding to the rise of stripe order (40). (At low enough frequency, the layers behave as a co-

herent superconductor, resulting in a reflectivity of unity. At the frequency of the Josephson plasma resonance

(JPR), the interlayer coherence breaks down, and charge oscillates between the layers; the reflectivity drops

below the normal-state response before recovering at higher frequency (41).) The JPR results on LNSCO, and

the studies of LBCO, motivated proposals that PDW order associated with stripes would cause a cancellation

of the interlayer Josephson coupling, consistent with the observation of 2D superconductivity (3, 4).

Somewhat weaker charge stripe (42, 43) and spin stripe (44, 45) order is found in La2−xSrxCuO4 with

x ∼ 0.12 in zero field. For x = 0.10, it has been observed that applying a c-axis magnetic field induces spin-

stripe order (46). Measurements of c-axis reflectivity on a similar sample indicate that the field causes a rapid

decrease in the coherent interlayer coupling (47). Similar behavior is found in LBCO x = 0.095 (48), where

superconductivity in the decoupled planes survives to at least 35 T (49). Evidence for bilayer decoupling has

recently been reported for La2−xCa1+xCu2O6 (50). The field-induced decoupling is similar to the behavior

found in LBCO x = 0.125, suggesting that PDW order is present in these sample and that it is less sensitive

to magnetic field than is the uniform d-wave order.

The loss of coherent coupling between superconducting layers can be explained by the presence of PDW

order, but what do other experiments tell us? The superconducting gap for PDW order is predicted, in

weak-coupling analysis (28), to be large in the antinodal regions of reciprocal space, but zero along finite arcs

centered on the d-wave nodal points. The gap structure can be tested by ARPES. Such measurements on

LBCO x = 1/8 do show the antinodal gap, but they also suggest a d-wave-like dispersion near the nodal

region (51, 52). At the node, however, the spectral function is broad in energy and shifted to ∼ 20 meV below

the chemical potential, similar to a recent observation of a nodal gap in La2−xSrxCuO4 with x = 0.08 (53).

Mean-field calculations of the PDW state that take account of the spin-stripe order predict such a gap (54).

While there remains a large degree of uncertainly concerning its interpretation, the ARPES data should not

be ignored and will receive further discussion in section 6.

One picture of the PDW state involves superconducting stripes that are phase locked by Josephson coupling.

That suggests that optical reflectivity measurements with the polarization in-plane but perpendicular to the

stripes might yield a response similar to the JPR behavior found in c-axis reflectivity. Indeed, such behavior

has been observed for LBCO x = 0.125, with reflectivity approaching one at low frequency and crossing below

the normal state response above 20 meV, for temperatures of 40 K and below (55). Another test is to apply

a c-axis magnetic field strong enough to destroy the interstripe Josephson coupling. Such an experiment on

LBCO x = 0.125 finds that, for T < 1 K, fields above 30 T are required to eliminate all 2D coherence, resulting

in a highly-resistive metallic state with approximate particle-hole symmetry, consistent with pair correlations

surviving in decoupled charge stripes (56).

The cancellation of the Josephson coupling for PDW orders that are orthogonal in adjacent layers applies

for linear interactions. If one can drive large ac currents, then it may be possible to induce a nonlinear coupling.

Cavalleri’s group has demonstrated this on LBCO with x slightly away from 1/8. For x = 0.115, the JPR is at

a frequency too low to detect; nevertheless, use of a high-intensity terahertz beam generates a JPR response at

the third harmonic, even at temperatures far above the bulk Tc (but below the charge-ordering temperature)

(57). This experiment provides intriguing evidence for the PDW state.
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One of the most distinctive features of the PDW state is the spatial variation of the order parameter between

stripes in the same and adjacent planes. The resulting phase structure in turn suggests several approaches

for exploring this exotic phase based on probing the nature of quasiparticle and Josephson tunneling into a

PDW material. Several such measurements have been carried out that exhibit evidence for the predicted PDW

phase.

Scanning tunneling microscopy (STM) on La2−xSrxCuO4 x = 0.12 with the tunneling current along the c

axis revealed an unexpected zero-bias anomaly (58). Subsequent calculations in a t − J model presented an

explanation for this observation from a PDW state exhibiting antiphase domains (59). Additional experiments

reveled an anisotropic spatial modulation of the zero-bias peak consistent with this model (60).

Figure 7

(a) The predicted modulation of the phase of the charge stripes in the PDW state. This can be probed by measuring

the current-phase relation of a Josephson junction fabricated between the crystal (LBCO) and a conventional
superconductor (Nb), using a Au tunneling barrier.

For a stripe-ordered cuprate such as LBCO, where the interlayer Josephson coupling is frustrated by the

orthogonal stripe orientation in neighboring layers [Fig. 7(a)], a proposed test is to reduce the cancellation

by applying a magnetic field parallel to the planes; when oriented at 45◦ to the stripes, the field partially

compensates for the momentum mismatch between the layers, causing an enhancement of the Josephson

tunneling (61). A test of this type has been done through transport measurements at low temperature and

high magnetic field on single crystals of Eu- and Nd-doped La2−xSrxCuO4 (62). In a highly dissipative regime

with evidence for in-plane superconducting correlations, the ratio of the c-axis to the in-plane resistivity

decreased as the in-plane field was increased, consistent with the predicted scenario.

An even more direct test of the PDW state is to probe the Josephson current-phase relation (CPR) of

junctions between the candidate crystal and a conventional superconductor. In the presence of a PDW state,

the rapid spatially-modulated sign changes in the Josephson coupling will suppress the first-order Josephson

coupling and manifest itself as a significant sin(2φ) harmonic in the CPR of a junction containing LBCO (see

Fig. 7b). This phenomenon has been predicted and observed in other junctions with spatially alternating

critical current density (63, 64, 65, 66). Additionally, we expect the fraction of Josephson current exhibiting

a sin(2φ) CPR to increase with temperature as the interlayer Josephson coupling and conventional 3D su-

perconductivity are suppressed within LBCO, giving way to an increasing proportion of spatially varying 2D

superconductivity within the CuO2 planes (4).

This experiment has recently been carried out by the Van Harlingen group in Urbana on crystals from

Genda Gu at Brookhaven (67). Using both dc Josephson interferometry and anisotropic SQUID measurement

techniques, they compared the CPR of La2−xBaxCuO4-Au-Nb Josephson junctions for x = 0.155 where the

Tc is maximum and at x = 0.125. As shown in Fig. 8, at x = 0.155, the CPR is nearly sinusoidal, with a

nearly negligible sin(2φ) component. However, at x = 0.125, the non-sinusoidal shape of the CPR arising from

the onset of a sin(2φ) component is apparent. The expected temperature dependence shown in Figure 8 was

observed. By using junctions fabricated straddling the corner of the crystal, it was also demonstrated that

the order parameter symmetry of the crystal remains dx2−y2 in the region where the Tc is suppressed and the

PDW state is present.

3.2. Bi2Sr2CaCu2O8+δ: Vortex Halos and Josephson Microscopy

In this subsection we describe spectroscopic imaging scanning tunneling microscopy (SISTM) and

scanned Josephson tunneling microscopy (SJTM) studied of PDW states in the high-Tc superconductor

Bi2Sr2CaCu2O8+δ.

3.2.1. Spectroscopic Imaging and Josephson STM. SISTM (68) has become a key technique for determining

electronic structure of quantum materials. At the surface of each sample, the tip-sample differential con-

ductance for single-electron tunnelling, dI
dV

∣∣
r,V
≡ g(r, E), is measured versus voltage V = E

e
and location
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Expected experimental signatures of the PDW state in the current-phase relation of Josephson junctions between

La2−xBaxCO4 and a conventional superconductor. At x=0.125 in the PDW regime, with increasing temperature as

the first-order Josephson effect decreases, we expect a growing sin(2φ) component of the CPR arising from the phase
modulation and a corresponding increase in the ratio of the sin(2φ) to sinφ component. In contrast, at x=0.155 near

the maximum Tc, the sin(2φ) and its ratio to the sinφ component should be very small. Abbreviation: CPR,

current-phase relation; FFT, fast Fourier transform.

r = (x, y). The resultant array of g(r, E) images is related to the density of electronic states N(r, E) as

N(r, E) ∝ g(r, E)∫ eVS g(r)dE
7.

where VS is a fixed but arbitrary voltage used to establish each tunnel junction. SJTM is a quite different

technique in which the magnitude of the maximum Cooper-pair tunnelling current from a superconducting tip,

|Ic(r)|, is measured versus location r, yielding an image of the density of electron pairs in the superconducting

condensate.

3.2.2. Evidence for a PDW in Bi2Sr2CaCu2O8+δ in a Magnetic Field. In the of PDW studies, focus has

recently turned to modulations of the density of single-electron states N(r, E) within the vortex halos (69,

70, 71, 72) - regions of suppressed but non-zero superconductivity that surround vortex cores. Whether these

modulations stem from a field-induced PDW may be studied using Ginzburg-Landau (GL) analysis. Consider a

homogeneous d-wave superconductor ∆SC(r) = Fd ∆SC (where Fd is a d-wave a form factor) coexisting with a

uniform PDW ∆P
PDW (r) = Fp∆P [exp(iP · r) + exp(−iP · r)] with form factor FPDW. The symmetry allowed

N(r) modulations generated by interactions occur as products of these two order parameters that transform

as density-like quantities. Specifically, the product ∆P∆∗SC ⇒ N(r) ∝ cos(P · r) results in N(r) modulations

at the PDW wavevector P , while ∆P∆∗−P ⇒ N(r) ∝ cos(2P · r) produces N(r) modulations occurring at P .

Consequently, in the case in which PDW order arises in a halo surrounding a vortex in a d-wave superconductor,

there should be two sets of N(r) modulations at P and at 2P within each halo, with those at 2P decaying with

distance from the core at twice the rate as those at P (if ∆P
PDW = ∆P

PDW (|r| = 0) exp(−|r|/ε))(11, 12, 13, 14).

To explore these predictions, single-electron tunneling conductance g(r, E) was measured by Edkins et al.

(14) for Bi2Sr2CaCu2O8+δ samples (Tc ∼ 88K; p ∼ 17%) at T = 2K. The g(r, E) is first measured at zero

field and then at magnetic field B = 8.25T, in the identical field of view (FOV) using an identical STM tip.

The g(r, E,B) and g(r, E, 0) are registered to each other with picometer precision, and then subtracted to

yield δg(r, E,B) = g(r, E,B)− g(r, E, 0). This result is the field-induced perturbation to the density of states

δN(r, E,B) ∝ δg(r, E,B).

Figure 9A shows measured δg(r, E = 10meV, B) exhibiting the classic ’halo’ of modulations in the density

of Bogoliubov quasiparticles at q ≈ [(±1/4, 0); (0,±1/4) 2π
a0

]. However, for the energy range 25 < |E| < 50meV

which is |E| ≈ ∆SC , the measured δg(r, E = 30meV, B) shown in Fig. 9B contains distinct modulations

within each halo. Fourier analysis yields
∣∣∣δ̃g(q, 30meV)

∣∣∣ as shown in Fig. 9C, reveals a set of eight maxima

at q = [Px;Py] ≈ [(± 1
8
, 0); (0,± 1

8
)]2π/a0 which we label P , and at q ≈ [(± 1

4
, 0); (0,± 1

4
)]2π/a0 which we

label 2P . The inset to Fig. 9C shows the measured amplitude
∣∣∣δ̃g(q, 30meV)

∣∣∣ along (1,0) indicating that the
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Figure 9

A Measured δg(r, E,B) = g(r, E = 10meV, B = 8.25T)− g(r, E = 10meV, B = 0T) in a 58nm × 58nm FOV, showing
typical examples of the low-energy Bogoliubov quasiparticle modulations within halo regions surrounding four vortex

cores in Bi2Sr2CaCu2O8+δ. B Measured field-induced modulations

δg(r, E = 30meV, B) = g(r, E = 30meV, B = 8.25T)− g(r, E = 30meV, B = 0T) in the same 58nm × 58nm FOV.
Although the vortex halos are clearly seen to occur at exactly same locations as in A, the modulations therein are

radically different. C Amplitude Fourier transform
∣∣∣δ̃g(q, 30meV)

∣∣∣ (square root of power spectral density) of

δg(r, E = 30meV, B) data in B. The ~q ≈ [(± 1
4
, 0); (0,± 1

4
)]2π/a0 points are indicated by black crosses. Four sharp

maxima, indicated by P , occur at q = [Px;Py ] ≈ [(± 1
8
, 0); (0,± 1

8
)]2π/a0 whereas four broader maxima, indicated by

2P occur at q ≈ [(± 1
4
, 0); (0,± 1

4
)]2π/a0. D Measured

∣∣∣δ̃g(q, 30meV)
∣∣∣ along (0,0)-(1/2,0) showing the two distinct

maxima in the field induced N(r) modulations, occurring at by P = 0.117± 0.01 and 2P = 0.231± 0.01. Figure from

Reference (14) with permission.

field-induced N(r, E) modulations occur, with both λ ≈ 8a0 and λ ≈ 4a0, along both the (1,0);(0,1) directions

within every vortex halo. The fitted widths δ(P ) of all |P | ≈ (1/8)2π/a0 peaks are close to half that of the

|2P | ≈ 1/4(2π/a0) peaks: δ(2P ) = 1.8 ± 0.2)δ(P ). These phenomena occur in a particle-hole symmetric

manner for 25 < |E| < 45 meV and exhibit predominantly s-symmetry form factor modulations at P and 2P .

Finally, measured field-induced energy gap modulations δ∆(r) = ∆(r, B)−∆(r, 0) yield a Fourier transform

δ̃∆(q) that exhibits energy-gap modulation at P but not at 2P .

In the context of Ginzburg-Landau theory (11, 12, 13, 14),these data indicate that, in Bi2Sr2CaCu2O8+δ,

a field-induced pair density wave state emerges within the halo region surrounding each quantized vortex core.

3.2.3. Evidence for a PDW in Bi2Sr2CaCu2O8+δ at Zero Magnetic Field. Atomic-resolution superconducting

STM tips (73) have also been applied for the study of the PDW state in underdoped cuprates, but at B=0.

Ideally, if both the tip and sample are superconducting, with identical superconducting energy gaps ∆(r)

and quantum phase difference φ, a Josephson current I(φ) = IJ sin(φ) of Cooper pairs can ensue. However,

for nanometer scale junctions with normal-state resistance in the gigaohm range, thermal fluctuations will

overwhelm stable-phase Josephson tunneling until the sub-millikelvin temperature range. Instead, phase-

diffusion dominated Josephson tunneling is usually achieved, in which the measured I(V ) exhibits a maximum

current Ic ∝ I2J (74). Measuring |Ic(r)| has therefore become the established approach for visualizing the
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A Typical Ic(r) image from Bi2Sr2CaCu2O8+δat p = 0.17%. The Ic(r) modulations are parallel to the CuO2

directions (structural supermodulation-induced Ic(r) modulations along the (1,1) directions are removed). B |(Ic(q)|,
the Fourier transform of Ic(r) (crosses at q = (π/a0, 0); (0, π/a0)). Maxima from Ic(r) modulations (dashed red

circles) occur at q = (0.25, 0)2π/a0; (0, 0.25)2π/a0. Figure adapted from Reference (78)).

variation of Josephson tunnelling (74, 75, 76, 77) and thus of superfluid (electron-pair) density ρs(r).

In a PDW of the type ∆P
PDW (r) = Fpdw∆P (r) [exp(iP · r) + exp(−iP · r)], the superfluid density ρs(r)

modulates spatially. Searches for such phenomena in cuprates required visualizing |Ic(r)| with nanometer

resolution, high IJ , low RN and low operating temperatures. For the Bi2Sr2CaCu2O8+δsamples (Tc = 88K, p =

0.17) studied by Hamidian et al. (78), the STM operates below 50mK, and high IJ achieved using an exfoliated

nanometer-sized flake of Bi2Sr2CaCu2O8+δwith spatial resolution ∼ 1nm adhering to the end of each tungsten

STM tip. Figure 10A shows a typical |Ic(r)| image measured under those conditions, clearly exhibiting periodic

modulations in ρs(r) along the CuO2 axes (1,0);(0,1). Figure 10B shows |Ĩc(q)|, the magnitude of the Fourier

transform of |Ic(r)|, indicating that the wavevectors of ρs(r) modulations in Bi2Sr2CaCu2O8+δare at q =

(0.25± 0.02, 0)2π/a0; (0, 0.25± 0.02)2π/a0.

Single-electron tunneling SISTM studies on equivalent Bi2Sr2CaCu2O8+δcrystals reveal intense electronic

structure modulations (79, 80, 81) that are locally commensurate (82, 83) and unidirectional (81, 84), exhibit

4a0 periodicity (82, 83) with a d-symmetry form factor (84, 85), and are concentrated at particle-hole symmetric

energies |E| ≈ ∆1 where ∆1 is the pseudogap energy scale. (68, 80, 81, 84).

At values of p where simultaneous data exist, the wavelengths of these modulations are indistinguishable

from those in |Ic(r)| within joint uncertainty. While this is consistent with a composite PDW order formed out

of a CDW with the same wave-vector and the uniform d-wave superconductivity, whether the order parameter

of the fundamental state underpinning these single-electron signatures is a CDW or a PDW remains to be

determined. The relationship of the |Ic(r)| modulations observed at zero magnetic field to the PDW in vortex

halos also remains unclear, as it is yet to be established whether the λ ≈ 4a0 |Ic(r)| modulations could be

consistent with an underlying λ ≈ 8a0 PDW, as expected. Nevertheless, the |Ic(r)| imaging data (e.g Fig. 10)

provide strong direct evidence for the existence of an PDW coexisting with a robust homogeneous Cooper-pair

condensate in underdoped Bi2Sr2CaCu2O8+δ.

4. OTHER SYSTEMS

4.1. Organics, Fe-based superconductors, and heavy fermion materials

A variety of materials have been argued to be candidates for the originally proposed FFLO state, in which a

Zeeman field shifts the energy of the up-spin and down-spin partners of the Cooper pairs in opposite directions,

such that it becomes energetically beneficial to create Cooper pairs with finite momentum. The materials

discussed in this section have been reviewed previously (86, 87, 88), so here we highlight the main results and

refer to these reviews for more detail.

The most compelling case for realizing the original FFLO-like PDW superconductor (1, 2) is in organic
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materials. A detailed overview of the experimental evidence for this in quasi-2D organic materials with in-plane

magnetic fields is given in Ref. (86). Organic materials have proven to be ideal for realizing the FFLO-like

PDW phase for three reasons: they are quasi-2D, suppressing the creation of vortices and allowing the high

fields needed to create FFLO-like PDW states to be reached; they are clean with mean free paths typically a

factor of 10-100 greater than the superconducting coherence length; and they have weak spin-orbit coupling.

The primary evidence for the existence of the FFLO state is largely of three types: the observation of the

characteristic upturn of the upper critical field at low temperatures; the observation of two high-field phase

transitions at low temperatures; and the observation of an inhomogeneous magnetic field distribution con-

sistent with that expected for a FFLO-like phase. κ-(BEDT-TTF)2Cu(NCS)2 presents the strongest case in

which: magnetic torque measurements suggest a first order transition line at high fields inside the SC state

(89, 90), specific heat measurements observing the same first order transition (91, 92); NMR measurements

consistent with the observation of spin-polarized quasiparticles localized near the spatial nodes of the FFLO or-

der parameters (93, 94), and evidence of multiple phase transitions in rf-penetration depth measurements (95).

Among the quasi-2D organics there is also evidence for a FFLO-like PDW state in λ-(BETS)2GaCl4 (96, 97)

and β′′-(ET)2SF5CH2CF2SO3 (98, 99). In addition, resistivity measurements observe an upper critical field

and field anisotropy behavior consistent with a FFLO-like PDW state in the quasi-1D organic (TMTSF)2ClO4

(100).

Fe-based superconductors represent a likely class of materials in which to realize a FFLO-state (101) because

of their high upper critical fields. To date, experimental evidence has been found for a FFLO-like PDW state in

KFe2As2 (102) where magnetic torque and specific heat measurements observe two superconducting transitions

at high fields and observe a characteristic upturn of the upper critical-field at low-temperatures.

Finally, there were reports that FFLO phases also appear in the heavy fermions superconductors UPd2Al3
(103, 104), CeRu2 (104, 105), and CeCoIn5 (106, 107). However, the phase transition attributed to the

FFLO-like PDW phase in both UPd2Al3 and CeRu2 has been argued to a consequence of a vortex related

transition (87). The case for CeCoIn5 is much more interesting. Subsequent to the original discovery of a new

low-temperature, high-field superconducting phase that was argued to be a FFLO-like PDW phase(106, 107),

this phase was found to have spin-density wave (SDW) order (108). This SDW order exists only within the

superconducting state. Due to the coexistence of usual superconductivity and SDW order, PDW order will

also generically exist (16), making it difficult to identify a primary order parameter. This has led to many

proposals that are still being experimentally untangled (88).

4.2. Pair Density Wave in degenerate atomic gases: FFLO

Experimental progress in trapping, cooling and coherently manipulating Feshbach-resonant atomic gases

opened unprecedented opportunities to study degenerate strongly interacting quantum many-body systems

in a broad range of previously unexplored regimes (109, 110, 111, 112, 113). This has led to a realization

of paired fermionic superfluids (114, 115, 116) and the associated Bardeen-Cooper-Schrieffer (BCS) to Bose-

Einstein condensation (BEC) crossover (117, 118, 119).

These neutral atomic systems are particularly well-suited to imposing (pseudo-) magnetization, corre-

sponding to the number imbalance P ≡ (N↑ − N↓)/N in the pairing hyperfine ↑ − ↓ species, circumventing

challenges of charged electronic superconductors realized in solid state, as discussed in much of this review

(120, 121, 122, 123). The imbalance and the associated Fermi surface mismatch frustrate the singlet paired

state (124, 125, 126, 127) driving quantum phase transitions out of the gapped BCS superfluid to a variety of

putative ground states and thermodynamic phases (128, 129, 130, 131, 132, 133). One of the most interesting

is the FFLO finite-momentum paired state (1, 2).

Experiments (120, 121, 122, 123) on trapped atomic systems have extensively explored and established

the predicted interaction-imbalance phase diagram, illustrated in Fig.11 (130, 134, 135), dominated by the

superfluid to (polarized) Fermi-liquid first-order phase transition, that manifests in phase separation (126, 134,

131). However, outside of one dimension, so far, no signatures of the enigmatic FFLO Pair Density Wave

state (1, 2) have been seen. This is consistent with the narrowness of the FFLO sliver in the predicted phase

diagram (130, 134), much remains to be understood about FFLO’s stability, beyond mean-field analyses of

simplest FFLO states (136, 137).

In contrast, in one dimension (where it is robust and generic at any nonzero imbalance) the FFLO state

has been experimentally realized in a two-dimensional array of decoupled one-dimensional traps, generated via

a two-dimensional optical periodic potential(138). Although spin-resolved density profiles in these experiments

shows consistency with the FFLO interpretation, they still lack the “smoking gun” observation of e.g., a finite

momentum condensate peak in the momentum distribution function, precluded in thermodynamic limit in one

dimension by strong quantum and thermal fluctuations and by the inhomogeneous atomic density special to

trapped gases.
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A mean-field zero-temperature phase diagram of an imbalanced Fermi gas, as a function of the inverse scattering length
and normalized species imbalance (dimensionless magnetization) P = (N↑ −N↓)/N ≡ ∆N/N , showing the magnetized

(imbalanced) superfluid (SFM), the FFLO state (approximated as the simplest FF state, confined to a narrow red

sliver bounded by PFFLO and Pc2) and the imbalanced normal Fermi liquid. Data from References (130) and (134).

Experimental efforts are under way to move toward the quasi-one-dimensional limit of coupled tubes, and

in fact the 1d-3d crossover signatures have been experimentally demonstrated (139, 140). This is done by

reducing the strength of the periodic optical potential, thereby allowing the 1d PDWs of neighboring tubes to

lock through inter-tube coupling. Cooling and equilibration, particularly for pseudo-spin remains a challenging

experimental problem.

5. MECHANISM

5.1. Evidence of PDW in Models of Strongly Correlated Systems

Condensates with finite momentum are problematic in conventional BCS theory. In the first place, so long

as either time-reversal or inversion symmetry is preserved, the Fermi surface is always perfectly nested for

some form of P = 0 pairing, i.e. the superconducting susceptibility is peaked and logarithmically divergent

as T → 0, while it remains finite at all non-vanishing P . If the P = 0 divergence is quenched, as it is in any

singlet channel by a finite Zeeman field, as recognized Fulde and Ferrell (2) and by Larkin and Ovchinnikov

(1) the pair susceptibility can be peaked at a non-zero P , but in that case it remains finite even as T → 0.

In the Hartree-Fock approximation, used in BCS theory, lack of nesting leads to a finite critical coupling for

the condensate to occur even at zero temperature. In the case of FFLO states, the Zeeman coupling to the

external magnetic field acts as a small tuning parameter, i.e. the critical coupling can still be parametrically

small.

In contrast, for the putative PDW states of high Tc superconductors (HTSC) which occur in the absence

of an external Zeeman coupling, no such small tuning parameter exists. Even the naive application of BCS

theory to PDW states typically requires a critical coupling of strength comparable to the band-width. More

importantly, the superconducting states in these materials, uniform or not, arise in strongly correlated systems

whose normal state is a strange metal, a metallic state without well defined fermionic quasiparticles.

The PDW looks locally like a d-wave superconductor. It breaks translation symmetry in such a way that

the order parameter changes sign upon translation by half a period (see Fig.12). Therefore, it is reasonable to

suppose that it is a close competitor of the uniform d-wave superconductor under strong-coupling circumstances

in which correlation lengths are short and the important physics is correspondingly local. Indeed, in the context

of a proposed SO(5) theory of intertwined antiferromagnetic and d-wave superconducting order, it was proposed

in 1998 by Zhang (141) some time ago that a “SO(5) spiral” state consisting of alternating stripes of Néel order

and d-wave superconducting order – precisely the sort of intertwined PDW and spin stripe shown in Fig.12

– might arise in some circumstances. A variety of subsequent studies employing variational wave functions

have also found such states, starting with the 2002 study of Himeda, Kato and Ogata (3) who used variational

Monte Carlo calculations of Gutzwiller-projected wave functions for the ground state of the t− t′ − J model.

These states are inhomogeneous versions of the doped resonating valence bond (RVB) wave functions widely

used as candidate ground states for the t − J model. These early results, as well as later variational and

renormalized mean field studies (142, 143, 59), found three states whose variational ground state energies are

very close: the uniform d-wave superconductor, the PDW state, and a striped d-wave superconductor. For

doping near x = 1/8, these variational studies found period 4 states with half-filled stripes. The intertwined
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Figure 12

Qualitative picture of the PDW. The local superconducting order parameter is d-wave: positive (negative) in the bold
(shaded) links, and axes rotate after a half-period. In this example, presumably applicable to LBCO, the PDW is

intertwined with spin stripe order. Notice that the charge density has half the period of the PDW order. Figure

adapted from Reference (4)).

nature of the PDW states was also proposed on phenomenological grounds in refs. (4, 6, 7).

BCS mean-field methods have also been used to describe PDW phases. Loder and coworkers (144, 54) used

BCS mean field theory for a 2D system with a t−t′ band structure widely used in the cuprates, and an effective

attractive interaction for electrons on nearest-neighboring sites of strength V (assumed to originate from spin

fluctuations). Within a BCS type mean field theory these authors find that while in the weak coupling regime

the ground state is an uniform d-wave superconductor, for systems near 1/8 doping, for V larger than a critical

value Vc & t, the preferred pairing state is locally d-wave but has a finite momentum, i.e. a pair-density-wave,

with or without an associated spin stripe state. A subsequent publication by Wårdth and Granath found that

Vc is significantly larger than this estimate (145). These authors proposed a model with an interaction with

local attraction and longer range phase slip pair hopping and found, using a BCS type theory, that the critical

coupling for the PDW state is significantly reduced, and typically of the order of the kinetic energy bandwidth

(145, 146).

Other microscopic mechanisms have also been proposed and studied within mean-field approaches. Lee

proposed an Amperean pairing mechanism (7), due to local spin current fluctuations in a RVB type state

(147), and showed (in mean field theory) that it favors a PDW. Soto-Garrido and Fradkin (148) studied the

superconducting condensates arising in the vicinity of a (Pomeranchuk) instability in the quadrupolar spin

triplet channel of a Fermi liquid (149), and found that the PDW competes with a spin triplet p and a spin

singlet d wave superconducting states. Soto-Garrido and coworkers (150) used a quasi-1D approach based on

a model of stripe phases (151) and found PDW states.

At present, the only model that has been definitively shown to have a PDW state is in a model of strongly

correlated systems in one dimension known as the Kondo-Heisenberg chain. This model consists of a 1D

system of mobile electrons, a Luttinger liquid, coupled by a local Kondo exchange interaction JK to a spin-1/2

quantum Heisenberg antiferromagnetic chain with exchange coupling JH . Models of this type have been studied

for a long time in the context of the physics of heavy-fermion superconductors. Bosonization and density-

matrix renormalization group (DMRG) studies by Sikkema, Affleck and White revealed that for JH & JK
this system has a spin gap (152), which was subsequently interpreted as an exotic η-pairing superconducting

state (153, 154). Specifically, the dominant long-range (power-law) correlations involve an oscillatory charge

2e order parameter, but it is a composite order in the sense that it cannot be simply expressed as a product

of two electron creation operators. Berg, Fradkin and Kivelson (155) reexamined this system by DMRG and

showed that it is indeed a PDW state, albeit an exotic one. Specifically, on open chains with different boundary

conditions, they showed that in this state all the fermion bilinear operators decay exponentially with distance.

Only order parameters that are composite operators of the Luttinger liquid and the spin chain have (quasi)

long range order, as suggested by the bosonization studies. For instance, the PDW order parameter is realized

as the scalar product of the Néel order parameter of the spin chain with the spin triplet superconductor of

the Luttinger liquid, and has quasi-long-range order. (Remarkably, later work showed that this incarnation of

the PDW is actually a topological superconductor (156).) Similar behavior was found for the expected charge

4e uniform superconducting order parameter. Later on, similar results were found for extended generalized

Hubbard models on 2-leg ladders at special filling fractions of the bonding band (157).

A real challenge is establishing the existence of a PDW state in two dimensions using unbiased approaches,

even numerically. Due to the notorious fermion sign problem, quantum Monte Carlo type methods are only

useful at relatively high temperatures, and have not been able to reach low enough temperatures to see

unambiguous signs of d-wave superconductivity in Hubbard models and its generalizations. None-the-less,

down to the lowest temperatures accessible, such calculations always find a superconducting susceptibility that
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is peaked at P = 0 (158). However, exact diagonalizations can only deal with systems which are too small

to be useful to detect PDW states (even if they were ground states). One option is DMRG simulations on

relatively wide ladders, and we will discuss these in the next paragraphs. DMRG methods are known to be

asymptotically exact matrix-product states (at least for gapped states), whose accuracy can be improved by

increasing the bond dimension of the tensors. These approaches are known to generate large enough quantum

entanglement to produce most states of interest in one-dimensional systems, including quantum critical states.

Other options include tensor network approaches which, conceptually, are extensions of DMRG to higher

dimensions. However, while in 1D it is known that matrix product states are sufficient to describe most

systems of interest, in higher dimensions this is an open question. The current most widely used tensor

network approach is PEPS (projected entangled paired states) (159). PEPS, and its relative iPEPS (infinite

PEPS), consist of a variational ansatz in the form of a tensor network (a matrix product state) with many

variational parameters that grow as a power of the “bond dimension” (the dimension of the tensor), of order

3D4 where D is the bond dimension. Unlike conventional variational wavefunctions, which are essentially

product states (and hence have only short-range entanglement), iPEPS can describe more complex states with

large-scale entanglement. Corboz and coworkers (160) initiated a study of of the t − J model as a function

of doping. In the most recent study of this type (161) it was found that, for a wide range of parameters

J/t and doping δ the uniform d-wave superconductor, the striped superconductor, and the PDW (called the

“anti-phase” stripe state by Corboz et al), are essentially degenerate. Although this result agrees with the

simpler variational wave functions discussed above, in the iPEPS generated states the charge stripes are not

half-filled and, in fact, their occupancy varies continuously with J/t. (Were such a PDW state to be relevant

in the cuprates, its period would not be particularly pinned to 8a, even near 1/8 doping, in contrast with

experiment in LBCO.) The iPEPS results are highly encouraging for the existence of PDW order. However,

we should be careful to note that it is currently unclear what biases are implied in this approach, and these

results need to be “benchmarked” against other techniques.

Quite recently, large-scale DMRG simulations of the t − J model on 4-leg ladders in the doping range

5% − 12.5% with t/J = 3 (and other values as well) (162, 163, 164) have been carried out. These authors

find strong evidence for d-wave superconductivity (i.e. a sign change of the superconducting amplitude along

two orthogonal directions) and charge-stripe phases with 1/2 a hole per unit cell. These simulations kept a

significantly larger number of states in the DMRG than earlier studies. However, although the parameter range

examined by these authors is broad and overlaps with those used in the iPEPS simulations discussed above, no

evidence for PDW states have (yet) been detected in the DMRG. This result is in apparent contradiction with

the iPEPS results, and this discrepancy is quite puzzling. This is a pressing problem a deeper understanding

of the advantages and limitations of these methods is clearly required. A recent DMRG study of a doped

t − J model on a triangular lattice with ring exchange interactions found encouraging evidence of PDW-like

superconducting correlations that change sign as a function of distance, but which fall sufficiently rapidly (at

least like r−4) that they do not give rise to a diverging susceptibility as T → 0. (165).

We close this section by noting that PDW states have been studied using methods of holography, the AdS-

CFT correspondence. Although it is not clear what microscopic systems can be described with holography,

these theories have the clear advantage of describing metallic states without well defined quasiparticles (166).

Several holographic models have been published describing superconductors with striped phases (167), and

systems with intertwined superconducting and PDW orders (168, 169, 170).

5.2. Fulde-Ferrell-Larkin-Ovchinnikov state in degenerate atomic gases

One context in which a FFLO state has a well-understood microscopic mechanism is a singlet superconductor

with pairing frustrated by a magnetic field (171, 172, 173, 2, 1). An ideal realization of such a system is a

pseudo-spin imbalanced Feshbach-resonant atomic Fermi gas (120, 121, 122, 123), where (in contrast to charged

electronic superconductors in solid state), the Zeeman component of the magnetic field and the effective

magnetization can be tuned independently of the obscuring orbital field effects, such as vortices. This has

rekindled extensive theoretical research (124, 125, 126, 127, 174, 130, 134, 131, 133, 135, 140), reviewed in

Refs. (113, 9).

5.2.1. Model of a resonant Fermi gas. A neutral fermionic atomic gas is well captured by a microscopic

Hamiltonian

H =
∑
k,σ

(εk − µσ)ĉ†kσ ĉkσ + g
∑
kk′q

ĉ†k↑ĉ
†
−k+q↓ĉ−k′+q↓ĉk′↑. 8.

with the single-particle energy εk = ~2k2/2m. The separately conserved number Nσ = (N↑, N↓) of atomic

species (hyperfine states) σ = (↑, ↓) is imposed by two chemical potentials, µσ = (µ↑, µ↓) or equivalently by
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the average chemical potential µ = 1
2
(µ↑ + µ↓) and the Zeeman field h = 1

2
(µ↑ − µ↓), that respectively tune

the total atom number N = N↑ +N↓ and atom pseudo-spin imbalance ∆N = N↑ −N↓.
Key features distinguishing this Fermi system from those familiar electronic ones in solid state contexts

(discussed in other parts of this review) are (a) the fermions are neutral and thus do not couple to the

electromagnetic vector potential, (ib) absence of a periodic ionic potential (though an optical lattice can be

imposed by an off-resonant interfering laser fields) that explicitly breaks rotational and translational spatial

symmetries, and (c) the resonant nature of the Feshbach interaction, parameterized by a short-range s-wave

pseudopotential, g < 0. The resulting attractive interaction can be computed through an exact T -matrix

scattering analysis (111), with g controlling the magnetic-field tunable (175) 3D scattering length

as(g) =
m

4π

g

1 + g/gc
, 9.

that diverges above a critical attraction strength, |g| = gc ≡ 2π2d/m, corresponding to a threshold for a

two-atom bound state of size d.

The Zeeman h field-driven Fermi surface mismatch (that, for these neutral fermions can be tuned in-

dependently of the orbital field, and can also be realized via atomic mass and other dispersion imbalance),

energetically penalizes the conventional BCS −k to k pairing at weak coupling. However, as noted at the begin-

ning of Sec. 5.1, a finite momentum P pairing, ∆P =
∑

k g〈c−k↓ck+P↑〉, (set by the Fermi surface mismatch)

allows for an FFLO ground state, that compromises between a fully paired superconductor and a magnetized

Fermi liquid. (2, 1)

The simplest treatment is a mean-field analysis(130, 134) for the PDW order parameter ∆(r) =∑
p ∆pe

ip·r = g〈ĉ↓(r)ĉ↑(r)〉, generalized to pair-condensation at a set of reciprocal lattice vectors, p, with

the amplitudes ∆p and p self-consistently determined by minimizing the ground state energy. This gives a

satisfactory qualitative description (quantitatively valid deep in the weakly-coupled BCS regime, kF |as| � 1),

as a starting point of more sophisticated large-Nf (176, 177) and ε-expansions (178) treatments.

5.2.2. Ginzburg-Landau model and transitions to FFLO state. Starting at a high Zeeman field, above the

Chandrasekhar-Clogston-Pauli limit (171, 172), hc = ∆BCS/
√

2 (a critical field for a direct first-order mean-

field transition from a Fermi-liquid (FL) to a uniform BCS superconductor), inside the polarized Fermi liq-

uid and reducing h, one finds (in mean-field) a continuous transition at hc2 ≈ 3
4
∆BCS > hc to a FFLO

superconductor(1, 2, 130, 134) (stable for hc1 < h < hc2), most strongly paired at a momentum with mag-

nitude p0 ≈ 1.2hc2/vF ≈ 1.81∆BCS/vF . This is captured by a Ginzburg-Landau expansion (derived by

integrating out the fermions (137)) for the ground-state energy density,

H ≈
∑
p

εp|∆p|2 +
∑
{pi}

Vp1,p2,p3,p4∆∗p1
∆p2∆∗p3

∆p4 , 10.

which is valid for a weak finite-momentum pairing amplitude ∆p near the continuous FL to FFLO phase

transition at hc2. It is notable that this expansion is analytic at small ∆p, in contrast to a vanishing Zeeman

field, that at zero temperature exhibits |∆|2 ln ∆ nonanalyticity. The finite momentum instability is captured

by the dispersion (130, 134, 137)

εp ≈
3n

4εF

[
−1 +

1

2
ln
v2F p

2 − 4h2

∆2
BCS

+
h

vF p
ln
vF p+ 2h

vF p− 2h

]
,

≈ J(p2 − p20)2 + εp0 , 11.

whose minimum at a finite p0(h) ≈ 1.2h/vF (near hc2) captures the polarized Fermi system’s energetic tendency

to pair at a finite momentum, forming a FFLO state at a fundamental reciprocal lattice vector with a magnitude

p0. The Zeeman energy hc2 at which εp0(h) vanishes determines the corresponding mean-field FL-FFLO phase

transition point.

As in other problems of periodic ordering (e.g., crystallization), in the absence of an underlying lattice

(as in trapped atomic gases) εp is rotationally invariant, and thus, the quadratic |∆p|2 term only selects the

fundamental magnitude of the reciprocal lattice, |p| = p0, with all degenerate orientations becoming unstable

simultaneously at hc2. This contrasts qualitatively with PDW ordering in solid state, where the underlying

ionic crystal explicitly breaks rotational and translational symmetries, selecting a discrete set of p momenta,

as discussed in Sec. 2. In the rotationally and translationally invariant trapped atomic gases, it is the

quartic and higher order nonlinearities in ∆p that select the structure of the FFLO state, characterized by

reciprocal lattice of p’s and the corresponding amplitudes, ∆p. Near hc2 it is the (−p,p) LO state (1) with

∆LO(r) = ∆L0 cosp · r, that is energetically preferred over the single plane-wave FF state, ∆FF (r) = ∆FF e
ip·r

(1, 2). However, no study has conclusively determined the structure of the FFLO state throughout the field-

interaction (h - 1/kF a) phase diagram, despite heroic efforts in the relativistic quantum chromodynamics

(QCD) context (179, 180).
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Near hc2, the unidirectional pair-density wave (Cooper-pair stripe) order, characterized by a collinear set

of pn’s is well captured by focusing on long-wavelength fluctuations of these most unstable modes. The state

is well described by a Ginzburg-Landau Hamiltonian density

H = J
[
|∇2∆|2 − 2p20|∇∆|2

]
+ r|∆|2 +

1

2
λ1|∆|4 +

1

2
λ2j

2, 12.

where deep in the BCS limit, near hc2 the model parameters are given by

J ≈ 0.61n

εF p40
, p0 ≈

1.81∆BCS

~vF
, r ≈ 3n

4εF
ln

[
9h

4hc2

]
, 13a.

hc2 ≈
3

4
∆BCS , λ1 ≈

3n

4εF∆2
BCS

, λ2 ≈
1.83nm2

εF∆2
BCSp

2
0

, 13b.

and the inclusion of the current-current interaction, j = 1
m

Re [−∆∗(r)i∇∆(r)] is necessary for a complete

description of the transverse superfluid stiffness.

Well below hc2, the PDW order parameter ∆p is no longer small, invalidating the above Ginzburg-Landau

expansion and requiring a complementary weak h Bogoliubov-deGennes (BdG) treatment, that is fully non-

linear in ∆(r). However, it is challenging to handle analytically for anything other than a single harmonic FF

state, ∆FF (r) = ∆FF e
ip·r, as it requires a fully self-consistent BdG band-structure analysis, with energetics

strongly dependent on the details of the FFLO state. A single-harmonic BdG calculation(130, 134) finds that

a BCS singlet superconductor is unstable to the FF state at hc1 ≈ 0.70∆BCS , thus suggesting that PDW state

is stable only over a very narrow range of h.

However, numerical BdG analyses (181, 182, 183) and a negative domain-wall energy in an otherwise

fully-paired singlet BCS superfluid in a Zeeman field(183, 184) argue that a more generic pair-density wave

state (that includes a larger set of collinear wavevectors) may be significantly more stable. Well below hc2
the FFLO state is thus more accurately described as a periodic array of solitons, well-paired ±∆BCS stripes

interrupted by “normal” gapless domain-walls that accommodate the imposed fermion imbalance, driven by

h. This state can be equivalently thought of as a periodically ordered microphase separation between the

normal and paired states, that naturally replaces the macrophase separation(185, 126) ubiquitously found in

the BCS-BEC detuning-imbalance phase diagram (130, 186, 134, 135) (see Fig.11). Upon increasing h above

hc1 the excess of the majority fermionic atoms (polarization) in an imbalanced system can be continuously

accommodated by the sub-gap states localized on the self-consistently induced domain-walls between +∆ and

−∆. Thus the imbalance and density of domain-walls continuously grows above hc1 eventually overlapping

at hc2 and thereby interpolating between the two limiting forms of the LO state. This picture resembles the

soliton mechanism for doping of polyacetylene (187), and is explicitly realized in one-dimension (1d) through

exact BdG (181) and Bethe ansatz (188, 189) solutions and via bosonization(190, 191), that exhibits the

commensurate-incommensurate (CI) Pokrovsky-Talapov (PT) transition (192) from a fully paired s-wave su-

perfluid to a Larkin-Ovchinnikov state. Such phenomenology also emerges from the numerical BdG studies

in two dimensions(182, 183). This response to a Zeeman field is quite analogous to the more familar phe-

nomenology of type-II superconductor in an orbital magnetic field, with fully-gapped BCS, partially paired

FFLO and fully depaired normal FL playing the role of the Meissner, Abrikosov vortex lattice and normal

states, respectively.

5.2.3. Goldstone modes and topological excitations. Trapped atomic gases (in the absence of an optical lattice)

exhibit underlying translational and rotational symmetries. Thus, as we discuss below, in addition to the off-

diagonal-long-range order, the FFLO states break continuous spatial symmetries, and hence exhibit unusual

Goldstone modes and novel topological defects. This contrasts qualitatively with the putative solid state PDW

realizations (formulated in Sec. 2 and discussed in the rest of this review), where spatial symmetries are broken

explicitly by the underlying crystal, and, thus, orientational Goldstone modes are absent.

Inspired by the one dimensional picture discussed above, a class of striped unidirectional FFLO, with

Cooper pairs condensed at a co-linear set of wavevectors pn = np0, has received considerable attention. The FF

plane wave and LO standing wave states are qualitatively accurate representatives, that have been extensively

explored (113, 9). In particular, beyond mean-field theory, the time-reversal breaking FF state is characterized

by an order parameter ∆FF (r) = ∆p0e
ip0·r+iφ(r), with a single Goldstone mode φ(r), that in addition to

superfluid phase fluctuations, also describes local fluctuations in the orientation of FF stripes. Because in a

trapped atomic gas context, free of the underlying lattice, FF state spontaneously breaks rotational (but not

translational) symmetry, the energetics of φ(r) is qualitatively “softer”, with the Hamiltonian (derivable from

the microscopics, above GL theory, or deduced based on symmetry)

HFF =
1

2
χ−1n2 +

1

2
K(∇2φ)2 +

1

2
ρ‖s(∂‖φ)2, 14.
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where ∂‖ ≡ p̂0 ·∇, ρ
||
s = 8Jp2|∆p0 |2 is the superfluid stiffness along p0, K = 2J |∆p0 |, and n the density

operator (only well-defined on a lattice), canonically conjugate to the phase field φ. The spontaneous breaking

of rotational symmetry requires a strict vanishing of FF’s transverse superfluid stiffness, ρ⊥s = 0.(193, 136, 137)

The time-reversal preserving LO state spontaneously breaks both rotational and translational symmetries,

with a (−p0,p0) order parameter

∆LO(r) = 2∆p0e
iφ cos

[
p0 · r + θ

]
, 15a.

that is a product of a superfluid and a unidirectional density wave order parameters. These are respectively

characterized by two Goldstone modes φ(r) and θ(r), corresponding to the superfluid phase and the smectic

phonon u(r) = −θ(r)/p0 of the striped state.

Similarly to the FF state, the underlying rotational symmetry of the LO state strongly restricts the form of

the Goldstone-mode Hamiltonian. Namely, its θ(r) = −p0u(r) sector must be invariant under a rotation of p0,

that defines the spontaneously-chosen orientation of the pair-density wave, and therefore must be described by a

smectic form (194, 195, 196). On the other hand because a rotation of the LO state leaves the superconducting

phase, φ(r) unchanged, the superfluid phase φ(r) sector of the Hamiltonian is therefore expected to be of

a conventional xy-model type. Consistent with these symmetry-based expectations the LO Goldstone-mode

Hamiltonian was indeed found(136, 137, 197, 198) to be given by

HLO =
1

2
Π2 +

1

2
K(∇2u)2 +

1

2
B(∂‖u)2

+
1

2
χ−1n2 +

1

2
ρ‖s(∂‖φ)2 +

1

2
ρ⊥s (∇⊥φ)2, 16.

with Π the momentum operator field, which is canonically conjugate to the phonon u. Thus, the LO state is

a highly anisotropic superfluid (though less so than the FF state, where ρ⊥s = 0), with the ratio

ρ⊥s

ρ
‖
s

=
3

4

(
∆p0

∆BCS

)2

≈ 1

4
ln

(
hc2
h

)
� 1, 17.

that vanishes for h→ h−c2.(136, 137)

We note that in the presence of underlying rotational invariance, at nonzero temperature, the collinear

FFLO states exhibit a 3d quasi-long-range translational order. Thus, the translational symmetry is restored

and somewhat oxymoronically, the FFLO order parameter ∆P vanishes inside a collinear FFLO phase. Con-

sequently, the uniform ∆4e is the fundamental nonzero order parameter at any nonzero temperature.

In addition to Goldstone modes, the low-energy phenomenology is also controlled by topological defects,

that in conventional superfluids are limited to 2π vortices in the superfluid phase φ(r). In stark contrast, the

additional LO phonon Goldstone mode θ(r) also admits 2π vortices, corresponding to an integer a dislocation

in the striped LO order. Even more interestingly, as also discussed in Section 2.1, in addition to these integer

vortex (±2π, 0) and dislocation (0,±2π) defects, the product nature of the LO order parameter, (15) allows

for half-integer vortex-dislocation composite defects, (±π,±π).(5, 136, 10, 137, 7) The sequential unbinding

of this larger class of defects leads to a rich variety of LO descendent phases. Many interesting consequences

such as three-dimensional quasi-long-range order, importance of Goldstone-mode nonlinearities, charge 4e

superconductivity, exotic topological phases and transitions of the enriched nature of the FF and LO states

have been extensively explored in Refs.(136, 137, 113).

Finally, we note that although the bosonic sector of the FFLO state, discussed above is well understood,

the problem is seriously complicated by the gapless fermions confined to the ±∆ domain-walls of the PDW.

These will certainly lead to damping of the bosonic Goldstone modes. Coupling between the gapless fermions

confined to strongly fluctuating FFLO phonons remain a challenging open problem, some aspects of which are

discussed in Ref.(137).

5.3. Nonuniform pairing in non-centrosymmetric and Weyl superconductors

Nonuniform pairing states with FFLO-like pairing mechanism have also been obtained in non-centrosymmetric

systems (199, 200). In general these systems involve pairing on Fermi surfaces (FS) whose centers do not sit at

high symmetry points in the Brillouin zone, and thus the Cooper pairs forming from these FSs carry nonzero

momentum.

One such scenario is for a metal with Rashba spin-orbit coupling in an in-plane Zeeman field H:

H =
k2

2m
− µ+ λ(k × σ) · ẑ − µBHσx 18.

The superconducting instabilities of the concentric split FS’s at H = 0 have been analyzed in Ref. (201) (see

also Ref. (202)). With H 6= 0, in the limit µBH � λkF , the two split FS’s approximately retain their shapes
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and get relatively shifted by ±P /2, where P = 2µBH
vF

ŷ, shown in Fig. 13. Naturally, the finite-momentum

pairing order parameters that couples as ∆±P c
†(k ± P /2)c†(−k ± P /2), which separately gap out the two

shifted split FS’s. Compared with the FFLO scenario in which only a small part of the FS is gapped, the

present state has a larger condensation energy and can potentially be realized at relatively small coupling.

3

Figure 13

(a):The split Fermi surfaces described by Eq. 18. Figure adapted from Ref. (199). (b): Left: spin texture on the Weyl

FS’s, and various Cooper pairs. Arrows 1 and 2 show Cooper pairs in a uniform SC state, but for Arrow 2 the fermions
have the same spin, and a singlet pairing gap vanishes here. Arrow 3 shows the Cooper pairs in a PDW state with

intra-FS pairing. Right: The point nodes in the spin-singlet pairing state. A more generic reasoning for point nodes

was given later; see main text. Panel a adapted from Reference (199), and panel b adapted from Reference (203).

Three pairing states have been theoretically investigated in Refs. (204, 199, 200): a uniform pairing order,

an FF-like “helical” pairing order with only one ordering momentum (say ∆+P ), and an LO-like stripe pairing

order with both ∆±P . Note that unlike a canonical PDW state where ∆P and ∆−P are related by inversion

and time-reversal symmetry, here both symmetries are explicitly broken already in the normal state. In

this case, symmetry arguments on the Ginzburg-Landau free energy imply the superconducting ground state

generally has finite-momentum pairing (205, 206). In microscopic studies, it was indeed obtained that the

finite-momentum pairing orders including helical order and stripe order occupy sizable regions in the pairing

phase diagram as a function of temperature and the in-plane Zeeman field (199, 200, 207). Properties of these

nonuniform pairing states in non-centrosymmetric materials have been reviewed in Ref. (208)

Signatures of such a stripe PDW-like state were indeed observed in proximitized HgTe Quantum Wells (209).

When gated to electron-doped regime, HgTe quantum well exhibits split FS’s with Rashba spin-orbit coupling.

The quantum well is coupled to a conventional superconductor on one side and subject to an in-plane magnetic

field B. As B varies, the oscillation of the Josephson current across the quantum well has been observed,

which is evidence for finite-momentum pairing order induced in HgTe. The in-plane Zeeman field either

can be an external field, or can be realized intrinsically. In Ref. (210) PDW pairing has been proposed

for SrTiO3-LaAlO3 oxide interfaces, which exhibits coexistence between ferromagnetism and superconducting

orders. It was shown that the effective interaction between the local moments drive the interface into a

ferromagnetic phase. Together with the Rashba spin-orbit coupling, the system was proposed to realize a

PDW-like state via the aforementioned mechanism. Another context of this mechanism for nonuniform pairing

is the surface superconductivity on topological insulators (TI). Much of the attention towards TI-surface

superconductivity has been focused on its realization of topological superconductivity, i.e., the well-known

Fu-Kane superconductivity (211). However, with a nonzero chemical potential, the surfaces also hosts ±P /2-

shifted FSs with a spin texture (212). However, unlike the FS in Fig. 13, the two FS’s are located at opposite

spatial surfaces. Moreover, inversion symmetry is not necessarily broken in the three-dimensional system, thus

the two FCs can have the same size. Remarkably, there is recently experimental evidence observing finite-P

pairing on TI surfaces with an in-plane Zeeman field. (213)

An interesting extension of this mechanism for the nonuniform pairing state is to 3d systems with FSs not

centered around any high symmetry points ±P /2 (203, 214, 215, 216). The simplest way of obtaining these

FS’s is from doping a Weyl semimetal, which does not require any symmetry to stabilize. A simple two-band

lattice model given by Ref. (203) describing this situation is

H0 = t(σx sin kx + σy sin ky) + tz[cos kz − cos(P/2)]σz +m(2− cos kx − cos ky)σz − µ 19.

For small chemical potential µ, each spherical FS encloses a Weyl point at ±P /2 and is spin-textured, analogous

to the 2d case with Rashba spin-orbit coupling (see Fig 13(a) for a ky = 0 slice).

Both intra-FS and inter-FS pairing can potentially occur, giving rise to a PDW-like state with ordering

momenta ±P and a uniform SC state respectively. The energetic interplay between PDW and a uniform
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superconductor depends on several factors. First, unlike the previous case where the FS’s remain symmetric

about their shifted centers for small H, here in general there is no symmetry relating ε(k+P /2) and ε(−k+

P /2) unless µ is very small. Either way, the susceptibility towards a PDW state is reduced, while typically

inversion symmetry (for the present case with two Weyl nodes) or time-reversal symmetry (e.g., for cases

with four Weyl nodes) guarantees a weak-coupling instability towards a uniform superconductor. By contrast,

there is a robust topological reason that the uniform SC order parameter has point nodes, which tends to

suppress the uniform superconductor. This was first observed in Ref. (203) and formulated in generic cases in

Ref. (215). Weyl points are monopoles of the Berry curvature B(k) = i〈∇ku(k)| × |∇ku(k)〉 in k space. Weyl

points at ±P /2 carry monopole charges ±1, and this monopole charge is equal to the Berry flux through its

enclosing FS. In the Nambu space of the pairing Hamiltonian, the Berry fluxes through the electron-like FS

and hole-like shadow FS subject to pairing, and the monopole charges adds up. It was shown that (215, 216)

the total monopole charge inside the original FS is 2 for uniform (inter-FS) SC, and is 0 for (intra-FS) PDW.

This means that the uniform SC state has to host at least two point nodes on each FS, independent of any

microscopic details. The PDW state can be fully gapped, likely leading to a higher condensation energy.

The detailed interplay between these two opposite effects has been examined in Ref. (214) with short-range

attractive interactions in PDW and SC channels, and the authors found that PDW state is favored for a

noncentrosymmetric Weyl metal. However, in more realistic systems a more careful examination on the band

structure and the interaction is needed to pin down the superconducting ground state.

6. BROADER RELEVANCE FOR THE CUPRATE SUPERCONDUCTORS

In the preceding sections we presented evidence of the existence of pair-density-wave superconducting order

in diverse systems ranging from cuprate high temperature superconductors to heavy fermionic materials to

organics to topological materials, as well in cold atomic systems. Unlike its FFLO predecessors, the PDW

discussed in the context of the Cuprate family does not require an external magnetic field for its existence.

As reviewed in earlier sections, the PDW is a new state of matter with unique properties not encountered

in other superconductors. It is a superconducting state with more than one complex order parameter. Its

more complicated order parameter manifold allows this state to accommodate various charge orders, together

with superconducting states, some even with an exotic flux quantization. This richness leads, in a natural

way, to an explanation of several intriguing experimental effects, such as dynamical layer decoupling and a rich

structure of superconducting vortices. These features also imply a complex phase diagram with a variety of

broken symmetry phases.

Given the evidence that PDW order appears in some places in the cuprate phase diagram, it remains to

discuss the implication of this observation in the broader context of cuprate physics (and beyond). Up to now

the evidence comes primarily from two groups of experiments on two groups of materials. First, as reviewed in

section 3.1, the layer decoupling observed in 1/8 doped LBCO which led to the PDW concept. This suggestion

has been leant further credibility by the observation of a variety of other related phenomena, such as the

detection of an anomalously large second harmonic in the Josephson relation in LBCO-Nb junctions and the

appearance of the familiar signatures of layer decoupling in other 214 materials when stripe order is enhanced,

including LSCO in a magnetic field. Second, a CDW with wave-vector equal to half of what is commonly

observed was seen in the vicinity of the vortex core in underdoped Bi-2212 (14). As such a CDW subharmonic

is expected as a consequence of coexisting uniform and PDW order, its observation provides strong evidence

of the existence of PDW in the vortex halo, as discussed in section 3.2.

It is worth mentioning that none of these pieces of evidence is entirely immune to the possibility of alter-

native explanations; indeed, in all cases there are additional experimental observations that while not actually

contradictory with the PDW interpretation, are also not entirely natural. Most importantly, to date no diffrac-

tion experiments have detected the expected CDW subharmonic associated with the coexistence of PDW and

uniform SC correlations, either in LBCO or in the magnetic field and temperature regimes that have been so far

explored in YBCO and BSCCO. Conversely, in the range of T in which layer decoupling gives strong evidence

of dominantly PDW correlations in 1/8 doped LBCO, ARPES data have been interpreted (217, 218) (see fig.

14) as showing a nodal-d-wave-like one electron spectrum, rather than the nodal-arc spectrum expected for a

pure PDW (similar two-gap ARPES spectra has been seen in BSCCO (218, 219); see fig. 15). In all cases,

there are multiple possible ways one can imagine reconciling these observations with the PDW interpretation.

However, ultimately we will rely on further experiments (some of which are discussed below) to resolve these

issues.

Putting these concerns aside, a key question is whether these PDW “sightings” are relevant only in the

relatively narrow context of cuprates with certain structural peculiarities (such as LBCO) or in the vicinity

of isolated vortex cores, or whether they have broader implications to the physics of underdoped cuprates.

In particular, there is the question of whether PDW correlations are in any way responsible for the so-called
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Figure 14

Momentum-dependent gap of La2−xBaxCuO4 and La2−xSrxCuO4 from ARPES experiments by Vishik et al. (218).
Abbreviations: ARPES, angle-resolved photoemission spectroscopy; LBCO, La2−xBaxCuO4 LEG, leading edge gap;

LEM, leading edge midpoint; LSCO,La2−xSrxCuO4. Figure adapted from Reference (218).

Figure 15

Momentum-dependent gap in Bi2Sr2CaCu2O8+δ from ARPES experiments by Vishik et al. (218). Abbreviation:

ARPES, angle-resolved photoemission spectroscopy. Figure adapted from Reference (218).

“pseudo-gap regime” observed in underdoped cuprates. For the purpose of this review, we will focus the

discussion of this question on the range of hole doping from p ∼ 0.08 to 0.15 in which there is an identifiable

temperature scale, T ∗, below which various measurable properties show a depletion of the density of states at

low energies. This thus pertains to an intermediate doping range between very low doping where physics is

dominated by significant local antiferromagnetic order and the high doping region where a full Fermi surface

enclosing 1+p holes forms. Note that T ∗ is at largest 300K-400K, which is still low compared with microscopic
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scales such as the exchange scale J . A phenomenon closely associated with this T ∗ scale is the appearance

of a deep depression in the single-particle spectral weight (i.e. the eponymous pseudo-gap) in the anti-nodal

portion of the Fermi surface up to T ∗, which in turn can be much higher than Tc. This pseudo-gap has been

seen in not only in ARPES data and but also by STM, as shown in Fig. 16; importantly, since STM accesses

both the unoccupied and occupied states, it reveals an approximate particle-hole symmetry of this gap. This

suggests that the gap is associated with some form of SC pairing. On the other hand, certain features of the

gap as inferred from ARPES evolve differently as a function of doping and temperature in the near nodal region

where the gap is small and in the antinodal region where it is large – the so-called nodal-antinodal dichotomy.

This can be seen to some extent in the data from Bi2212 shown in Fig. 15, and more dramatically in the case

of LBCO (Fig. 14) and Bi-2201 where detailed ARPES data are available (27). This apparent dichotomy has

led many researchers to conclude that the pseudo-gap has a distinct (non-superconducting) origin.

In addition to the energy gap, another striking feature of the underdoped cuprate phase diagram is the

existence of “intertwined” order parameters corresponding to multiple distinct broken symmetry states that

occur with similar energy and temperature scales, and which in some ways compete and in some ways cooperate

strongly with each other. In addition to the insulating Néel order and uniform d-wave superconducting order,

this list includes a variety of other metallic or superconducting spin-density wave, CDW, and nematic orders.

To this list we now add PDW order. It it is unreasonable that these materials should be accidentally fine-tuned

close to an extraordinarily complex multicritical point at which all these orders are degenerate with each other,

so it is reasonable to search for a description in which the observed orders derive from a smaller set of “primary”

order parameters.

The underlying idea is that, under certain circumstances, some class of “soft” fluctuations can partially melt

a parent broken symmetry state in such a way that some but not all the underlying symmetries are restored,

leaving behind a partially ordered state with some form of vestigial order (25). Formally, as discussed in Sec.

2, this corresponds to forming composite order parameters that are bilinear (or higher order) in the primary

order parameter fields. In the present context, starting from an assumed primary PDW order parameter,

one can readily construct composite orders corresponding to both CDW order and nematic orders making it

possible to view these as vestigial orders remaining when a fully ordered PDW is partially melted by strong

phase fluctuations.

There are several phenomenologically appealing aspects of this perspective. With regards to nematic order,

while there is suggestive evidence that it arises at temperature scales comparable to the pseudo-gap T ∗, it is

very difficult to see how a primary nematic order could be responsible for the pseudo-gap, but viewed as a

composite order, it can be understood as an avatar of a more basic set of correlations. Similarly, the observed

CDW order is mostly weak in the sense that it causes unusually small magnitude lattice distortions ,which is

why it was overlooked for so many years. (LBCO may be an exception.) The CDW does not open gaps or

fold the Fermi surface observed in ARPES in ways that are familiar from other classes of CDW materials. (27)

Still, CDW order appears to be thermodynamically robust in both the sense that significant CDW correlations

Figure 16

Pseudogap in Bi2Sr2CaCu2O8+δ from STM experiments by Renner et al. Figure adapted from Reference (220).
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persist over a wide range of T and p, and that it appears to compete on a more or less equal footing with

the uniform d-wave SC state, for instance in that there is a clear suppression of the superconducting Tc in the

range of dopings where the CDW correlations are strongest, while high Tc can be restored with the application

of modest pressure, presumably because this suppresses the CDW tendency. Again, viewing the CDW as a

composite order gives a rationale for viewing it as being simultaneously weak and strong in different aspects.

At a more local level, there has long been strong intuitive appeal to viewing the pseudo-gap as a form of

local pairing without any significant SC phase coherence. The fact that the pseudo-gap shares so many obvious

similarities with the d-wave SC gap is, of course, the strongest piece of evidence in favor of this interpretation.

For instance, at low temperatures, the gap magnitude along the FS seen in ARPES in Bi-2212 for a range of

doping roughly in the range 0.12 < p < 0.19, has the simplest d-wave form, ∆0{[cos(kx) − cos(ky)]/2}. This

gap is well understood as being due to the d-wave SC state. However, there is a distinct difference in the

thermal evolution of the near nodal and antinodal gaps; this is an aspect of the previously mentioned nodal

anti-nodal dichotomy. In particular, in the anti-nodal regime of the BZ, the gap magnitude is only very weakly

T dependent and it evolves smoothly into the pseudo-gap that persists to well above Tc. Moreover, as seen

in Fig. 15 as a function of decreasing p, the energy gap below Tc at the antinode starts to grow strongly

but continuously, i.e. the gap structure increasingly looks like the sum of a near nodal superconducting gap

(whose magnitude is in fact largely independent of p down to p ≈ 0.07) plus another gap which is large at the

antinode and small or vanishing in an arc region near the nodal point. In the context of the present work, it is

tempting to associate this evolution with an increasingly significant admixture of a PDW component in the gap

structure. Also, at least in one material where detailed ARPES spectra is available, Bi-2201, the top of the gap

does not line up with the location of the Fermi momentum, as one would expect for a uniform superconductor,

but is consistent with a momentum carrying condensate, such as the PDW (27, 7). While it may be possible

to account for the differences in the thermal evolution of the gap in the nodal and antinodal regimes as a

purely kinematic effect of phase fluctuations in a simple d-wave superconductor (221, 222), the nodal anti-

nodal dichotomy has been taken as evidence against fluctuating d-wave as the origin of the pseudo-gap at the

anti-node (218, 223). The PDW seems like a natural candidate that is next in line.

To summarize, there remains the larger question of the broader significance of the PDW in the phase

diagram of the cuprates and, particularly, of its role in the pseudogap regime. We find it useful to focus on

two extremal perspectives which lie at the opposite ends of a spectrum of possibilities. For ease of discussion,

we will label the first view as “competing order” and the second view as “mother state.”

In the “competing order” perspective, the PDW is a close competitor of uniform d-wave superconductivity

and of the observed CDW orders, which are to be regarded as independent (although strongly coupled) order

parameters. Their interplay may change from one family of cuprates to another (or in a particular family as

a function of doping) depending on other factors, e.g. the crystal structure, whether SDW order plays a role

or not, etc. This is especially clear in the case of LBCO, where the critical temperatures are comparable,

which naturally leads to the notion that they may have a common microscopic origin (and, in this sense, are

intertwined). Nevertheless, this does not necessarily imply that they should not be regarded as completely

separate orders. This is because there are terms in the Landau theory of the type presented in earlier sections,

e.g. trilinear couplings of the form ρ2P∆∗P∆−P . Physically, these terms can interpreted as saying that there

should be a non-vanishing value of the CDW order ρ2P as soon as the PDW order parameter is present,

|∆±P | 6= 0, i.e. ρP ∝ ∆∗−P∆P , and the CDW order is a composite order. However, this coupling can also be

interpreted as saying that as ρ2P becomes sufficiently strong, the quadratic term of the PDW order can aquire

a negative coefficient which when large enough, can induce a PDW order parameter ∆±P .

A convenient mathematical language to describe competing order is the nonlinear σ model. This has

been employed to describe the appearance of static PDW in the vicinity of the vortex core, where d-wave

order smoothly rotates to a PDW order (12). Another situation for its application may be the onset of layer

decoupling driven by a magnetic field in LSCO (47). In that case one may envision a rotation to a PDW from

a d-wave under the influence of magnetic field driven spin order.

A second perspective is to regard the PDW as the primary order (the “mother state”), and to regard other

orders (e.g. CDW) as composite (or descendant) orders. If the low temperature phase is indeed a PDW, then

the other orders may appear through a partial melting cascade of phase transitions. In these regimes, the CDW

(and nematic) orders are vestigial orders of the PDW, and the PDW itself can be regarded as a “fluctuating”

order.

As a fluctuating order, the PDW is locally defined on some length scale without ever being the ground

state. The correlation length should be long enough to form the antinodal gap and to induce the composite

orders, but short enough that the properties usually associated with superfluidity are not apparent. Taken to

its logical conclusion, this point of view states that PDW fluctuations are pervasive over a large part of the

doping, temperature and magnetic field range of the phase diagram and are the root cause of the pseudogap

phenomenology. This view has been strongly advocated by one of us (7), while a more guarded proposal that
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fluctuating PDW may be responsible for the pseudo-gap structure at the anti-node and the Fermi arc near the

node have been made earlier (6). The appeal of this picture is that it reduces the explanation of the panoply of

observed orders to the existence of local PDW orders. The rapid winding near the vortex has been suggested to

pin the PDW near the vortex core, rendering it static and generating the short range CDW with wavevector P

observed in STM experiments (224). Just as in the competing order scenario, the PDW provides a mechanism

for lowering the vortex core energies and, hence, making Hc2 parametrically smaller (12). What happens for

fields greater than Hc2 is probably the most intriguing open question. One has to face the question of how to

describe a pairing state that has been destroyed by quantum phase fluctuations, which remains an unsolved

problem (225). The quantum disordering of a PDW which already breaks translational symmetry and is gapless

even in the absence of a magnetic field, is still more clearly terra incognita. Experimentally CDW with longer

range order appears with increasing magnetic field and a metallic state with small Fermi pocket emerges.

Whether this state can be the result of a fluctuating PDW remains to be seen (226, 7, 28, 6, 227, 228, 11, 229).

It is worth noting that the competing order scenario faces the same issue: in the non-linear sigma-model

description (12), an ordered PDW appears when the vortex halo’s overlap and one needs to address the

question of how this order is destroyed.

Another important question for the “mother state” scenario is whether a coherence length large enough to

create an energy gap will necessarily produce large observable consequences of superconducting fluctuations.

Experimentally diamagnetic fluctuations have been observed up to two or three times Tc and also above

Hc2 at low temperatures (230, 231). However, there is little in the way of transport signatures. Can these

observations be reconciled? The ultimate question is whether these ideas and the contrast between the two

extreme perspectives can be either directly supported or falsified. In this sense the recent proposal of a method

to directly measure PDW fluctuations in a tunnel junction using Bi-2201 as one electrode and then taking

advantage of the known momentum that is present in this material offers some hope for the future (232).

Finally, it is important to determine the extent to which the 1P CDW observed so far by STM in Bi-

2212 can be detected with other probes and in other cuprate families. We note that several groups have

searched for, but so far failed to find, evidence of a subharmonic CDW P peak in X-ray diffraction in the

superconducting state of high Tc cuprates in which CDW order is known to be present. So far unpublished

X ray searches for a P peak have been carried out in 15.5% doped La2−xBaxCuO4 (P. Abbamonte, private

communication) and in YBa2Cu3O6+x at relatively low temperatures in magnetic fields ∼ 6T (233). Data from

other experiments in Bi2(Sr, La)2CuO6+δ at zero magnetic field (234, 235) also do not show evidence for this

peak. It would be interesting to extend the X-ray searches to regimes in which the layer decoupling effect, an

indicator of PDW order, has already been seen, such as in underdoped La2−xSrxCuO4 (47) in a magnetic field

and La2−xBaxCuO4 (236), or in superconducting Bi2Sr2CaCu2O8+δ in the regime where STM experiments

see the peak at wavevector P peak in vortex halos (14).
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37. Li Q, Hücker M, Gu GD, Tsvelik AM, Tranquada JM. 2007. Phys. Rev. Lett. 99:067001
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