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Coulomb interactions between the carriers may provide the mechanism for enhanced unconventional superconductivity in the copper
oxides. However, they simultaneously cause inelastic quasiparticle scattering that can destroy it. Understanding the evolution of
this balance with doping is crucial because it is responsible for the rapidly diminishing critical temperature as the hole density p
is reduced towards the Mott insulating state. Here, we use tunnelling spectroscopy to measure the T → 0 spectrum of electronic
excitations N(E) over a wide range of hole density p in superconducting Bi2Sr2CaCu2O8+δ . We introduce a parameterization for N(E)
based on a particle–hole symmetric anisotropic energy gap ∆(k) = ∆1(cos(kx)− cos(ky))/2 plus an inelastic scattering rate that
varies linearly with energy Γ2(E) = αE. We demonstrate that this form of N(E) enables successful fitting of differential tunnelling
conductance spectra throughout much of the Bi2Sr2CaCu2O8+δ phase diagram. We find that ∆1 values rise with falling p along the
familiar trajectory of excitations to the ‘pseudogap’ energy, whereas the energy-dependent inelastic scattering rate Γ2(E)=αE seems
to be an intrinsic property of the electronic structure and rises steeply for p< 16%. Such diverging inelastic scattering may play a key
role in suppression of superconductivity in the copper oxides as the Mott insulating state is approached.

Hole-doped copper oxides have their highest superconducting
critical temperature Tc at hole densities per CuO2 of p ∼ 16%, and
the superconductive state exhibits d-wave symmetry. By measuring
scanning tunnelling microscopy (STM) tip–sample differential
conductance dI/dV (r,V ) ≡ g(r,V ) at each location r and bias
voltage V one can achieve energy-resolved images of the local
density of excitations N (E) because g(r, V ) ∝ N (r, E = eV )
(when the N (E) integrated to the junction formation bias
is homogeneous1). Near optimal doping, the g(V ) spectra
seem highly consistent with the theoretical N (E) of a d-wave
superconductor; when superconductivity is suppressed by unitary
scattering at a Zn atom2,3 or at the centre of a vortex core3,4, the
two particle–hole symmetric peaks in g(V ) are also suppressed
as expected of the superconducting coherence peaks. Thus, there
can be little doubt that the measured N (E) near optimal doping
is that of the d-wave superconducting state. But as p is reduced,
the electronic excitations begin to exhibit5–7 a ‘pseudogap’. This
is a momentum-space anisotropic energy gap5–9 in the excitation
spectrum, the effect of which can be detected by numerous
spectroscopic and thermodynamic techniques6,7 far above the

superconducting Tc (which diminishes to zero as p → 0). The
pseudogap energy scale increases linearly with diminishing p.

Possible explanations for the pseudogap include, for example,
effects of hole doping an antiferromagnetic Mott insulator10–14.
Different models for this situation yield an anisotropic energy
gap, the maximum of which diminishes linearly with increasing
p (heuristically, this can be viewed as a dilution of the
antiferromagnetic exchange energy by the holes). But an alternative
type of proposal has been that the pseudogap is due to some
distinct electronic phase15–18, the anisotropic energy gap of which
represents the breaking of a different symmetry. Measurements
solely of the pseudogap energy scale versus p have not resulted
in discrimination between these two types of proposal and no
consensus exists for the cause of the pseudogap in the electronic
excitations of copper oxides5–7.

A fully detailed knowledge of the T → 0 intrinsic spectrum
of electronic excitations as a function of doping could help
break this impasse. The lifetimes of ‘nodal’ excitations—those
with k ‖ (π,π)—have been widely studied19–22; these states are
not the focus of study here. Instead, we focus primarily on
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Figure 1 Theoretical effect of Γ2 = αE inelastic scattering on the density of
states N (E ). Representative N (E ) from equation (2) demonstrating the effect of
increasing α for ∆1 = 20meV. The black line represents α = 0, the red line
α = 0.05, the green line α = 0.10 and the blue line α = 0.40.

higher-energy excited states that reach all the way to the antinodes
k ∼ (π, 0):(0, π). Scattering rates for these states have been
studied in the superconducting23 and non-superconducting24 state
at or above optimal doping, revealing strong momentum-space
anisotropy of the scattering rate at the Fermi surface. And, using
optical techniques, Gedik et al. stimulated these non-nodal excited
states and discovered that a marked change in their recombination
rate occurs near optimal doping25. Despite these recent advances,
knowledge of the T → 0 spectrum of electronic excitations
sufficient to constrain the models, does not yet exist.

Here, we introduce a new technique for understanding
the spatial and doping dependence of the electronic excitation
spectrum N (E) of superconducting cuprates. We use single crystals
of Bi2Sr2CaCu2O8+δ(Bi-2212) grown by the floating-zone method.
Atomically clean and flat surfaces of BiO are achieved and
maintained by cleaving the samples in cryogenic ultrahigh vacuum
before insertion into the STM at T = 4.2 K. We report on samples
with six different hole densities 0.08 ≤ p ≤ 0.22 (±0.01), each
within a 40 nm square field of view and, in total, comprising more
than 106 individual g(r,V ) spectra. Our objective is to use this
comprehensive data set to explore the evolution with doping of the
electronic excitation spectra.

In s-wave superconductors, an increasing quasiparticle inelastic
scattering rate reduces their lifetimes and eventually destroys the
superconductivity26. The signature of this process is manifest in
g(V ); at zero temperature and with no scattering, two ‘coherence’
peaks in g(V ) occur as singularities on either side of an empty
gap and, as scattering rates increase, these peaks decrease in height
and increase in width with a rapid increase of the density of
excitations near E = 0. Such g(V ) spectra can be very successfully
parameterized by adding an imaginary term Γ1 to the quasiparticle
energy E so that N (E) takes the form27

N (E,Γ ) = A×Re

(
E + iΓ1√

(E + iΓ1)
2
−∆2

)
. (1)

Here, Γ1 represents a constant scattering rate for quasiparticles. As
Γ1 is increased keeping ∆ constant, the coherence peaks diminish,

the peak–peak measure of the energy-gap becomes less well defined
and there is a rapid increase of N (0)—all in excellent agreement
with the experimentally observed effects in g(V ).

Our goal is to extend this approach to the cuprate excitation
spectra. The N (E) we propose is (at least formally) a natural
extension of equation (1)

N (E,Γ2) = A×Re

〈 E + iΓ2(E)√
(E + iΓ2(E))

2
−∆(k)2

〉
f s

+B×E.

(2)

Here, ∆(k) = ∆1(cos(kx)−cos(ky))/2 is a particle–hole
symmetric anisotropic energy gap. We could also introduce a
term iΓ1 representing a constant scattering rate from near-unitary
scatterers (analogous to equation (1)), but we find it plays a
subsidiary role herein. In contrast, the Γ2(E) = αE term, which
represents an effective scattering rate that is linear in energy,
plays a key role. In equation (2), A is a normalization factor
and B is a linear asymmetry term to deal with the ubiquitous
background slope of g(V ) of Bi-2212. Equation (2) then represents
the N (E) function that we fit to each measured g(V ) (its exact
form is determined over the appropriate Fermi surface at each
doping28—see the Supplementary Information). Figure 1 shows
examples of the N (E) calculated from equation (2) as α increases
(∆1 remaining constant). We see that the peaks are rapidly
suppressed but, because Γ2(0) = 0, an approximately V-shaped
gap centred on the chemical potential is retained for all scattering
rates. This is crucial for the successful parameterization of all g(E)
because, throughout the majority of the Bi-2212 phase diagram,
such characteristics are ubiquitous.

We use data sets consisting of atomically resolved and registered
g(r, V ) maps spanning the range of doping 0.08 ≤ p ≤ 0.22
(as determined from Tc = 95 K× (1–82.6 (p −0.16)2) along with
other techniques). Their spectra change continuously from quite
small gaps (∆1 ∼ 10 meV) with sharp particle–hole symmetric
peaks, to large (∆1 ∼ 65 meV) gaps where the vestigial peaks can
just be resolved29, to the V-shaped gaps with no apparent peaks
that predominate below p ∼ 10% (refs 1,30). To complicate matters
further, at each doping there is a distribution in excitation spectra
associated with the distribution of non-stoichiometric oxygen
dopant atoms31, with the probability of these different spectral
types varying with doping4,29–31. Fitting equation (2) to all of these
spectra is designed to yield quantitative values for both Γ2(E)
and ∆1—even when there are no peaks visible and despite both
the electronic disorder and the rapid changes in spectral types
with doping.

Figure 2 shows the distribution of spectral types29,30 from within
a single field of view, each curve being offset vertically for clarity.
The open circles represent the average g(V ) spectrum associated
with each energy-gap magnitude—the error bars showing the
1σ variations of each distribution (see the Supplementary
Information). This averaging process is designed to yield the
characteristic excitation spectrum associated with each energy-
gap maximum while minimizing complications from the spatial
variations in g(r, V ). We emphasize, however, that our fits of
N (E) are to each individual local g(r, V ) spectrum (see the
Supplementary Information). The solid lines in Fig. 2 show the
average of the fits of equation (2) to the g(V ) data—again with all
N (E) exhibiting the same ∆1 averaged together. It is striking how
well a very wide variety of g(V ) spectral shapes, ranging from those
exhibiting sharp particle–hole symmetric peaks to those with V-like
spectra having no apparent peaks, can be fitted using equation (2).
The fit-quality parameter is a normalized χ2 < 0.01 for more than
90% of the spectra 0.1 ≤ p ≤ 0.22. For the sixth sample with
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p ∼ 0.08, the normalized χ2 remains higher because the strong
tunnelling asymmetry1 prevents good fits. And for p > 0.22, the
spectral shape begins to change in a fashion not yet understood.
Nevertheless, the vast majority of measured g(r, V ) spectra for
8% < p < 22% can be fitted very well (a normalized χ2 < 0.01)
using equation (2). We show in the Supplementary Information
typical examples of the fit for each value of ∆1.

In previous studies of nanoscale electronic disorder in Bi-2212,
a local energy-gap maximum ∆pp was defined as half the energy
difference between two particle–hole symmetric peaks in g(V )
(wherever such pairs of peaks existed). Figure 3, column 1 shows
the spatial and doping dependence of such ∆pp maps (all fields of
view are 40 nm square and all gap scales are the same with white
indicating an inability to measure ∆pp because the peaks could not
be identified in high gap regions29,30). Figure 3, column 2 shows
the spatial and doping dependence of ∆1 maps calculated from
fits of equation (2) to the identical data sets. We see immediately
that the ∆1 maps closely resemble the ∆pp maps. Furthermore, the
normalized cross-correlation31 between all simultaneous pairs of
∆1 maps and ∆pp maps shown exceeds 0.9 (where identical images
would yield 1). These correspondences between Fig. 3, columns 1
and 2 give strong confidence that the equation (2) fitting scheme is
working well because the mathematical procedures to make the two
kinds of map are completely different.

New information is immediately available from measurements
of the gap maximum ∆1. A limitation of previous studies was
that, when there were weak or no peaks in g(V ) at low doping,
it became virtually impossible to determine ∆pp (such areas were
represented in black in refs 29–31 and white in Fig. 3, column 1).
But Fig. 2 shows clearly that with strong effective scattering rates
Γ2(E), the particle–hole symmetric peaks should disappear and the
density of excited states should appear as a V-shaped spectrum.
Therefore, ∆1 can now be extracted in regions where previously
it would have been considered unknown. For example, in Fig. 3,
column 2 the black regions now represent measured values ∆1

rising to above 100 meV in small nanoscale patches at our lowest
dopings. The extracted values of ∆1 (Figs 3,4) follow the doping
dependence of the pseudogap energy scale5–7. Moreover, we find no
distinction in terms of the fitted form of N (E) between excitations
to the pseudogap energy scale at low dopings, and the familiar
excitations of the superconducting state2–4 at higher dopings and
lower energies.

On the basis of accurate mapping of ∆1 (for example, Fig. 3,
column 2), we can also examine the doping dependence of
electronic disorder for the pseudogap energy scales. Figure 4a–f
shows these ∆1 maps, but now each is normalized to the mean
value of ∆1 from that same map and shown using the same
colour scale. Remarkably, we cannot distinguish which doping
is represented by the images in Fig. 4a–f. Figure 4g shows the
histograms of ∆1/∆̄1 from these images; it is immediately obvious
that the distributions are virtually independent of doping. This
indicates that the nanoscale trigger for energy-gap disorder is
universal (as it should be for disorder from interstitial substitutions
and dopant atoms31). Furthermore, because the same fractional
distribution about the mean gap energy is observed for pseudogap
energy scales at the low dopings (as Tc → 0), the high-energy
pseudogap excitations32 seem equally susceptible to nanoscale
electronic disorder as those of the superconductor4,29–31.

Next, we focus on the most significant discrepancies
between fits to equation (2) and the related g(r,V ) data. These
occur predominantly at the ‘kinks’ that have been reported
ubiquitously1,29–33 in cuprate STM spectra. In general, these kinks
are weak perturbations to N (E) near optimal doping, becoming
more clear within nanoscale regions; the number of detected
kinks increases as p is strongly diminished29,30. Figure 5a shows
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Figure 2 Fits of equation (2) N (E ) to the average g (V ) spectrum for each gap
magnitude. Open circles represent the average value of g (V ) from all spectra (in
one sample with p= 10%) that exhibit a given gap magnitude ∆1. The error bars
give one standard deviation of the distribution in g (V ) at each V. The corresponding
average of the fits of all spectra by equation (2) are shown as solid lines. The table
shows the fitted values of ∆1 and Γ ∗

2 =Γ2 (E=∆1). ∆1 ranges from 38mV to
93mV, whereas Γ ∗

2 spans from below 1meV to above 25meV. Each spectrum is
offset for clarity. Notice the particle–hole symmetry throughout.

representative ∆1-sorted spectra. Note that it is for ∆1 > 50 meV
(with equivalent data for all dopings shown in the Supplementary
Information) that the kinks become more obvious. Each kink is
identified by finding the point of inflection as the minimum in the
next derivative d2I/dV 2, as shown in Fig. 5b; its energy is labelled
∆0(r). We emphasize that these kinks are weak departures from
the fits to N (E) (see Supplementary Information, Fig. S4). For
the higher energies approaching ∆1 that are the focus of our
study, the kinks neither spoil the fit quality nor the extracted
Γ2(E) (see Supplementary Information, Fig. S2). Simultaneous
∆1(r) and kink-energy ∆0(r) maps can then be derived and
are shown in Fig. 5c,d. By imaging ∆0(r) for all dopings, we
find that the excitations are always divided into two categories:
E < ∆0 excitations are homogeneous in r space and well-defined
d-wave quasiparticle eigenstates in k space34,35, whereas for E > ∆0

they are heterogeneous29–33 and ill-defined in k space. Thus,
〈∆0(r)〉 represents the average energy scale separating spatially
homogeneous from heterogeneous excitations.
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Figure 3 Correlations between spatial arrangements of ∆pp, ∆1, α and Γ ∗

2 versus hole density p. a–e, ∆pp maps as a function of doping—each for a 40 nm2

field of view, the white areas are places where ∆pp cannot be defined. The dopings are calculated from the Tc values of the samples using the formula
Tc = 95 K× (1–82.6 (p−0.16)2 ) and corroborated by other techniques: 0.22±0.01 (a), 0.19±0.01 (b), 0.17±0.01 (c), 0.14±0.01 (d) and 0.10±0.01 (e). Tunnelling
asymmetry renders fitting the sixth data set at p∼ 8% impossible. f–j, ∆1 maps calculated from the fits to equation (2) using the identical original g (r,V ) maps as in column
1. Note that where ∆pp and ∆1 can both be evaluated they create virtually identical patterns. k–o, α (r) calculated concurrently with each ∆1 from the fits to equation (2).
p–t, The corresponding maximum effective scattering-rate maps Γ ∗

2 , calculated from columns 2 and 3. Note that ∆1, α and Γ ∗

2 create very similar patterns. Tc for each
sample is shown in the left panels.

Another breakthrough involves the capability to estimate local
effective scattering rates. Images of the coefficient α(r), the linear
coefficient of the energy dependence of Γ2, are shown in Fig. 3,

column 3. These α(r) range from 0 to 0.4 (yellow to black) with
the spatially averaged value 〈α(r)〉 growing with falling doping.
The scattering rates Γ ∗

2 at E = ∆1 are most physically significant.
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These are determined from Γ ∗

2 (r) = α(r)∆1(r) and are shown in
Fig. 3, column 4; they range from yellow (weak scattering) to black
(strong scattering) with the maximum effective scattering rates
Γ ∗

2 > 25 meV for p ≤ 10%. The direct correspondence between
both the coefficients α(r) and Γ ∗

2 (r) with ∆1(r) can be seen by
comparing columns 2, 3 and 4. From these, it seems that the
relationship between ∆1(r), α(r) and Γ ∗

2 (r) is intrinsic and local
at the nanoscale.

Figure 6a shows the value of α associated with each value
of ∆1 throughout six samples with different hole densities.
Overlaid on these data as solid black circles are the 〈α(r)〉 versus
the spatially averaged 〈∆1〉 for each sample; they are in good
agreement with the relationship between local pairs of ∆1 and α
values throughout. These data demonstrate that the relationship
between ∆1(r):α(r) pairs is local at the nanoscale and apparently
intrinsic—because it is the same in all samples at all dopings. Again,
we conclude that whatever electronic process perturbs the energy-
gap distribution29–33,36 perturbs the effective scattering rate Γ2(E)
locally in a related fashion.

Significant new insights emerge from these fits when
summarized in the form of a phase diagram. Figure 6b shows
〈∆1〉 as blue circles; it rises linearly with decreasing p along the
well-known5–7 trajectory for excitations to the pseudogap energy
scale. The black circles represent the spatially averaged E = ∆1

scattering rates 〈Γ ∗

2 〉; these are very low when p > 16% but undergo
a strong transition to a steeply rising trajectory for p < 16%. This
marked increase of the effective scattering rates for states away
from the nodes culminates in another transition somewhere below
p ∼ 10% with the appearance of extreme tunnelling asymmetry1,30

(rendering efforts to fit equation (2) impossible). Finally, the red
circles represent the spatial average of the second energy scale 〈∆0〉

where both the ubiquitous ‘kink’ in the g(r,V ) spectrum occurs,
and above which spatial homogeneity in quasiparticle excitations is
lost. Clearly 〈∆0〉 diverges from 〈∆1〉, falling slowly as p → 0.

DISCUSSION

Here, we introduce a new technique for analysing the tunnelling-
derived cuprate electronic excitation spectrum N (E) as T →0. The
results provide a significantly more quantitative and comprehensive
picture of the T → 0 excitations than was previously available
and for a wide range of hole densities. And, because this fitting
technique is demonstrably successful under a very wide variety
of circumstances, we can also anticipate its extension to new
arenas such as at high temperatures32 or when further phase
fluctuation effects occur near vortex cores4. It is important,
however, to be aware of the limitations of any interpretation of
Γ2(E) simply as a one-particle scattering rate. Equation (2) might
be taken as an expression for a classic d-wave superconductor
with single-particle scattering rate Γ2 within Bardeen–Cooper–
Schrieffer theory. Such an interpretation, which may possibly be
appropriate in the overdoped materials, would assume weakly
interacting quasiparticles. But as the Mott insulator is approached
at strong underdoping, this intrinsic effective scattering rate may
become so intense that such single-particle k-space excitations
are no longer well defined even in the superconducting state
(especially near the Brillouin zone face)8,9,21,23,25. Only a few authors
have investigated theoretically the lifetime of such quasiparticles
in the superconducting state and away from the nodes. Spin
fluctuation theories of d-wave superconductivity suggest relatively
weak dependence of the scattering rate on the direction of the
quasiparticle momentum37,38. In the underdoped cuprates, pair-
breaking scattering from vortex–antivortex pairs has been proposed
as the origin of large angle-resolved photoemission spectroscopy
spectral widths near the antinode39,40. Another caution about the
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Figure 4 Doping dependence of spatial arrangements of ∆1 (r ) normalized by
mean value of ∆1. a–f, Normalized ∆1 maps for six hole densities 0.8< p < 0.22
for 40 nm2 g (r, V ) data sets. The dopings are 0.08 (a), 0.10 (b), 0.14 (c), 0.17 (d),
0.19 (e) and 0.22 (f). The maps were normalized to the average value of ∆1 in each
g (r, V ) map. For p= 0.08, we can only estimate the value of ∆1 from fits to the
positive bias part of the spectrum where the steep tunnelling asymmetry is less
prominent. g, Histograms of the data in a–f. Obviously, these distributions are
statistically highly similar.

effective scattering rate Γ2 discussed here is that it is related to
the local Green’s function G(r,r), the spectral characteristics of
which will be broadened by scattering processes involving the
entire Fermi surface. It is then far from clear that a general
fit of the form of equation (2) with a local self-energy should
succeed; in an inhomogeneous system, the self-energy is a bilocal
quantity Σ (r,r′). Our findings that the vast majority of spectra
can be fitted, at least for E > ∆0, by an identical form as
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Figure 5 Spatial arrangements of kink energy ∆0 (r) that separates homogeneous from heterogeneous electronic structure. a, A set of ∆1-sorted spectra shown with
an expanded vertical scale designed to emphasize the representative kinks occurring ubiquitously in ∆1 > 50meV spectra. The arrow labelled ∆0 points to the average
energy at which such kinks are detected in dI/dV. b, The energy of each kink ∆0 (r) is identified by finding the point of inflection as the minimum in the next derivative
d2 I/dV 2. The black line is the spatially averaged value of d2 I/dV 2; the red line is the spatially averaged derivative of the fits to equation (2) and the arrow labelled ∆0

indicates the kink energy. c, Gap-energy ∆1 (r) map. d, Kink-energy map ∆0 (r) simultaneous with c. Clearly the kinks are associated with the higher-energy gap spectra,
and this observation is found to be true at all dopings described herein. The inset shows the distribution of the detected kink energies in the field of view.

equation (2) and that Γ2(r) is spatially correlated with ∆1(r),
imply that Γ2(r) does represent the effective ‘local’ self-energy
of a quasiparticle sampling a region of size less than or equal
to the gap ‘patch’ size, that is, the system is self-averaging on
this scale. A final caveat is that Γ2(E) = αE represents the first
approximation to the true energy dependence of scattering rates
consistent with the spectra; it captures very well the low scattering
of near-nodal quasiparticles and the intense scattering Γ ∗

2 at
E = ∆1. Eventually, however, a more complex form for Γ2(E)
consistent with everything reported herein but capturing finer
details of changes in scattering rate throughout k space may
be required.

Nevertheless, a number of important conclusions result from
these data and fitting procedures. Local quasiparticle lifetimes
τ(E) ∼ 1/Γ2(E) can now be determined from STM data. If we

focus on 〈Γ2〉 as a function of p, we find a very distinct change
near optimal doping characterized by the appearance and extremely
rapid growth of inelastic scattering rates towards the underdoped
regime. This latter effect signifies such intense scattering near
the antinodes at lowest dopings, that it must be closely related
to the disappearance8,9 of well-defined k states there. Moreover,
∆1(r) and the coefficient of energy dependence in the effective
scattering rate α(r) seem to be linked intrinsically and locally—
retaining the same relationship throughout all samples. The rapid
increase of Γ ∗

2
scattering rates as the Mott insulator state is

approached is probably due to electron–electron interactions, but
the exact microscopic processes cannot be identified from this
study. Significantly, we find no apparent distinction in terms of
the form of N (E) in equation (2) between fits to optimally doped
g(V ) spectra that definitely represent d-wave superconductivity,
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Figure 6 Local and global relationships between α and ∆1 plus ‘phase
diagram’ of 〈∆1〉, 〈∆0〉 and 〈Γ ∗

2 〉. a, The local relationship between α (r) and
∆1 (r) using all of the N (E ) fits for the average hole densities 〈p〉 shown. The spatial
average value of 〈∆1〉 and 〈α〉 for each of the five different samples is plotted as
large coloured circles. The global average relationship between 〈∆1〉 and 〈α〉

seems to be indistinguishable from the local relationship between α (r) and ∆1 (r).
b, The doping dependence of fitted 〈∆1〉 (blue circles), 〈∆0〉 (red circles) and 〈Γ ∗

2 〉

(black squares), each set interconnected by dashed guides to the eye. The
higher-scale 〈∆1〉 evolves along the pseudogap line5–7, whereas the lower-scale
〈∆0〉 represents segregation in energy between homogeneous and heterogeneous
electronic structure. The separation of 〈∆1〉 from 〈∆0〉 scales begins to occur at
the point where 〈Γ ∗

2 〉 starts to rise rapidly. Tc and p for each sample are shown.

and the g(V ) spectra of strongly underdoped samples down to
p ∼ 10% as the superconducting Tc diminishes towards zero. This
means that a combination of an anisotropic and particle–hole
symmetric gap to excitations ∆(k)=∆1(cos(kx)−cos(ky))/2 plus
an effective scattering rate Γ2(E) = αE provides a good description
of excitation spectra—without recourse to another coexisting
electronic ordered state. We emphasize that these conclusions
might not hold at p < 10% because spectra are no longer well
fitted by equation (2) owing to strong tunnelling asymmetry1.
Furthermore, our results for p > 10% do not imply that there
is only one energy scale present: consistent with both the wide
variety of long-standing results6,7,9,25,29,30,33 and the more recent
spectroscopic observations41–43, we find that two energy scales
always exist on the underdoped side of the phase diagram. The
higher-scale 〈∆1〉 evolves along the pseudogap line. Here, we
find that the lower-scale 〈∆0〉 (representing segregation in energy

between homogeneous and manifestly d-wave superconductive34

low-energy electronic structure and the heterogeneous high-energy
electronic structure) diverges from 〈∆1〉 when the Γ2 scattering
rates begin to increase rapidly.

An intriguing scenario stimulated by these observations
would be that superconducting cuprates exhibit an
anisotropic/particle–hole symmetric excitation energy scale
∆(k) = ∆1(cos(kx)−cos(ky))/2 but that the electronic
excitations experience rapidly increasing inelastic scattering
rates as p → 0. This scenario has recently become the focus
of intense theoretical study44 yielding a number of far-reaching
conclusions including (1) realistic calculations of impurity- and
spin-fluctuation scattering contributions to local density of states
showing that typical quasiparticle scattering rates are indeed
quasilinear in energy and proportional to ∆1, (2) demonstration of
how the mean free path falls markedly with increasing quasiparticle
energy so that, below a critical bias, all quasiparticles explore
so many heterogeneous gap patches that their spectra seem
homogeneous, (3) evidence that the quasiparticle interference
modulations34,35 could be weakened primarily by inelastic scattering
represented by Γ2(E) and (4) reconciliation of photoemission
with STM tunnelling and neutron-scattering lifetimes, by
inclusion of gap-inhomogeneity-induced broadening of the angle-
resolved photoemission spectroscopy spectral function. Moreover,
quasiparticles subject to scattering rates above some critical value
of Γ2(E) should not retain sufficient coherence to contribute
to the superfluidity in the ground state45, thus leading to the
ultimate breakdown of cuprate superconductivity as Γ ∗

2 diverges
at low doping.

To test these new hypotheses will require (1) determination of
whether the superconducting quasiparticles are actually governed
by a pairing gap on the scale of ∆1 as p → 0 and (2) microscopic
identification of the Γ2 scattering process and its relationship to the
energy ∆0 where segregation of homogeneous from heterogeneous
electronic structure begins.
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