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The correct interpretation of superfluid flow experiments relies on the 
knowledge of thermal and viscous effects that can cause deviations from ideal 
behavior. The previous paper presented a theoretical study of dissipative and 
reactivejnondissipative) thermoviscous effects in both steady and oscillating 
flow of an isotropic superfluid through small apertures and channels. Here, 
a detailed comparison is made between the theory and a wide array of 
experimental data. First, the calculated resistance to steady superflow is com- 
pared with measurements taken in a constant pressure-headflow cell. Second, 
the resonant frequency and Q of three dgferent Helmholtz oscillators are 
compared with predictions based on the calculated frequency response. The 
resonant frequency and Q are extracted numerically from the frequency 
response, and analytical results are given in experimentally important limits. 
Finally, the measured and calculated frequency response are compared at a 
temperature where the Helmholtz oscillator difSers significantly from a simple 
harmonic oscillator. This difference is used to explain how the thermal 
properties of the oscillator affect its response. The quantitative agreement 
between the theory and experiment provide an excellent check of the pre- 
viously derived equations. Also, the limiting expressions shown in this paper 
provide simple analytical expressions for calculating the effects of the various 
physical phenomena in a particular experimental situation. 

1. INTRODUCTION 

Superfluid hydrodynamics has been studied almost since the discovery 
of the superfluidity of 4He.2 Much of this work has been focused on the 
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problem of the critical velocity, v,, the velocity at which the superfluid begins 
to dissipate large amounts of flow energy. This paper focuses on the 
region below the critical velocity where, depending on the flow geometry, 
superflow may be accompanied by several dissipative processes. The 
geometry which will prove to be dissipative consists of relatively open 
regions, which allow normal fluid flow, connected by narrow channels that 
at least partially lock the normal fluid. Superflow through the channel 
creates a temperature difference between the open regions by changing their 
specific entropy. The temperature difference relaxes by thermal conduction 
through the container walls. Although the superflow itself remains dissipa- 
tionless, the irreversible flow of heat causes dissipation. The temperature dif- 
ference also creates a chemical potential difference which must be taken into 
account to correctly interpret a superflow experiment. Also, if the normal 
fluid is partially free to move, it dissipates energy through viscous losses. 

The equations of motion which govern flow in geometries similar to the 
one mentioned above are derived in Ref. 1. The end results of that calculation, 
which are repeated here, are the subcritical resistance to steady superflow 

and the frequency response of a Helmholtz oscillator 

The expression for H is given by Eq. 29 of Ref. 1. For a definition of all 
symbols used in this paper, see the Appendix. 

In this paper, we will apply these results to several different experimen- 
tal situations. First, we will investigate steady flow driven by a recently 
developed constant pressure-head flow cell.4 The data from this cell allows a 
quantitative check of the subcritical resistance given in Eq. 1. Second, we will 
compare the resonant frequency and Q of three different Helmholtz 
oscillators5~ with theoretical results obtained from the frequency response 
given by Eq. 2. The resonant frequency and Q are extracted numerically 
from the calculated frequency response, and analytical results are given in 
experimentally important limits. For one of the oscillators, we compare not 
only the resonant frequency and Q, but also the frequency response. The 
comparison is made at a temperature where the response has significant dif- 
ferences from the response of a simple harmonic oscillator. This difference is 
then used to explain some of the properties of this type of oscillator. 

Brooks et aL3 have performed similar calculations, but made several 
simplifying assumptions that restrict their results to adiabatic oscillations 
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with small thermal effects and nearly locked normal fluid. Also, their results 
are only valid in a frequency range near the Helmholtz resonance. In 
Ref. 1, we have not made these simplifications. Comparison of the present 
results with those of Ref. 3 is made in the appropriate limit. 

2. STEADY FLOW 

Reference 1 describes an experimental situation where steady super- 
flow can dissipate energy when the superfluid velocity, u , ~ ,  is less than v,. 
Normally, transient measurements of this region are limited because of the 
short time the transient spends with v, < v,.' We have developed a constant 
pressure-head flow cell4 that is able to drive flow with v, < v,, for long 
periods of time. This allows us to explore the region below o,. with high 
precision. 

As shown in Fig. 1, the cell consists of two superfluid filled volumes 
separated by a common wall. Mounted in the wall are two flexible, 8,um 
Kapton membranes and a flow channel. Both Kapton membranes are 5 cm 
in diameter and vacuum metalized on one side with a 100 nm thick layer 
of aluminum. They form the flexible electrodes of two parallel plate 
capacitors. The two rigid electrodes are solid copper plates mounted 50 ,urn 
away. The flow channel is a 4.8 pm x 0.27 ,urn aperture in a 0.09,um thick 
silicon nitride membrane. The Si-Ni membrane is grown on the surface of 
a silicon wafer which is then etched to expose a 20 pm square, freestanding 
Si-Ni window. The aperture is made in this window using electron beam 

Fig. 1. Constant pressure-head flow cell. 
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lithography.7 The silicon chip is glued to a 50pm thick copper foil which 
has been soldered to a copper ring. The assembly is mounted in the wall 
using indium seals. 

The left capacitor is used as a calibrated pressure gauge which 
measures the pressure drop across the aperture. Because of the tension in 
the Kapton membranes, a pressure difference displaces them from their 
equilibrium positions. The displacement of the flexible electrode causes a 
shift in capacitance which is measured by a capacitance bridge. The output 
of the bridge is a voltage which is proportional to the pressure drop across 
the membrane, and thus the drop across the aperture. The pressure gauge 
is calibrated by applying a known electrostatic pressure and measuring the 
bridge output. 

The right capacitor is used as a flow driver. The rigid plate is biased 
60 V above ground and voltages in the range + 12 V are applied to the 
flexible electrode. These voltages generate forces which displace the flexible 
electrode thereby generating the pressure drop across the aperture and 
driving flow through the aperture. The 60 V bias increases the displacement 
of the driver per volt applied to the flexible electrode and serves to some- 
what linearize the displacement as a function of the voltage on the flexible 
electrode. The driver displacement is calibrated in the same manner as the 
pressure gauge. 

The two flexible capacitors, capacitance bridge and feedback electronics 
form a system that can drive fluid through the aperture under constant 
pressure-head. When the feedback loop is locked, the feedback electronics 
apply voltage to the flexible electrode of the driver thereby displacing the 
pressure gauge. The feedback loop varies the voltage on the driver to keep 
the capacitance bridge output equal to the input reference voltage. After 
the transients have settled and the feedback circuit is holding the pressure 
gauge output constant, the pressure drop across the aperture is fixed and 
the driver is moving forward at a constant rate as it drives flow through the 
aperture. To displace the driver, the feedback voltage ramps up at a constant 
rate. Therefore, the derivative of the feedback voltage is a measurement of 
the supercurrent through the aperture. The system is able to drive up to 
3.5 x m3 of fluid at pressures as low as 0.5 mPa. The pressure resolu- 
tion was limited by external vibrations. Each side of the cell is filled 
through a superleak tight cryovalve8 which is then closed to eliminate any 
free surfaces. The cell and valves are mounted on an internally cryopumped 
3He refrigerator capable of reaching 0.23 K. The temperature is measured 
with a nominal 100 S1 Matsushita carbon resistor which is calibrated in situ 
using 3He vapor pressure thermometry. The resolution of the thermometer 
is approximately 1 mK. The thermometer was located outside of the cell 
and was not sensitive to the flow induced temperature difference. 
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Fig. 2. Supercurrent versus applied pressure at 1.80 K. The line is 
only a guide for the eye. 

In Ref. 1, it is shown that if the applied pressure difference is small and 
the channel at least partially locks the normal fluid, the superflow drives a 
temperature difference that eventually cancels the pressure contribution to 
the chemical potential. When the chemical potential difference becomes 
zero, the superfluid stops accelerating and v,  reaches a constant value that 
is below the critical velocity. This region corresponds to the subcritical 
resistive b r a n ~ h . ~  This branch, as measured in our constant pressure-head 
flow cell, is shown in Fig. 2. The subcritical resistance, W -AP/i ,  is a 
measure of the dissipation. It is determined by the inverse slope of a least 
squares fit of a line to the data on the subcritical branch. The resistance is 
plotted versus temperature in Fig. 3. The increasing scatter near T, is 
caused by a decreasing v ,  and the finite resolution of the pressure gauge. 
To compare this data to the subcritical resistance given in Eq. 1, the only 
parameters needed are the normalized Kaptiza resistancelo and the surface 
areas of the two sides, 81 cm2 and 240 cm2. For the channel geometry used 
in this experiment, the viscous contribution to the resistance can be 
approximated by1' 
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Fig. 3. Subcritical resistance. Circles: Measured resistance. Squares: 
Eq. 1. The resistance is evaluated every 0.05 K, the line is only a guide 
for the eye. The data is taken under a static pressure of approximately 
2 atm. 

where a = 0.27 p m  and b = 4.8 pm. For this channel, R, 9 p s 2 ~ R ,  at all 
temperatures making the viscous contribution negligible. As was noted in 
Ref. 1, the expression for the viscous contribution is only valid when the 
mean free path of the excitations which make up the normal fluid is much 
smaller than the size of the aperture. Equation 1 is calculated every 0.05 K 
and is plotted over the experimental points in Fig. 3. The calculated curve 
contains no adjustable parameters. The specific entropy, density and 
viscosity are taken from other sources.12 

4. OSCILLATING FLOW 

Equation 2 gives the formula for the frequency response of a superfluid 
Helmholtz oscillator including the thermal effects of a superleak, normal 
fluid flow, compressibility, and thermal expansion. The derivation is quite 
lengthy, and we refer the reader to Ref. 1 for the details. The resonant fre- 
quency and Q of the oscillator can be extracted from this response. We 
have measured these quantities in three different Helmholtz  oscillator^^.^ 
over a wide range of temperature. Here, we will make a comparison 
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between the experimental data and the resonant frequency and Q extracted 
numerically from the frequency response. Also, we will derive useful 
analytical expressions for the resonant frequency and Q in experimentally 
important limits. The frequency response of one of the oscillators, which 
exhibits some interesting properties at frequencies below its resonance, is 
compared with the frequency response predicted in Ref. 1. 

The three Helmholtz oscillators are generically the same. There are 
small differences in the methods of construction, but the essential differen- 
ces are in the type of flow channel and the volume to surface area ratio of 
the baths which form the Helmholtz oscillator. The flow channels range 
from submicron apertures in silicon-nitride membranes to 100 pm diameter 
tubes. The submicron apertures do not allow normal fluid flow and make 
thermal effects the most prominent. Since the major thermal resistance 
between the two helium baths is the Kaptiza resistance, the volume to sur- 
face area ratio of the baths determine the time constants for the relaxation 
of the superflow-driven temperature difference. When the time constant is 
short, the temperature difference drives an irreversible heat flow into the 
walls. This causes dissipation which lowers the Q. When the time constant 
is long, the temperature difference can build up causing a significant foun- 
tain pressure. The fountain pressure opposes the motion of superfluid and 
leads to an upward shift in the resonant frequency. The larger diameter 
tubes allow normal fluid flow which leads to viscous damping of the 
oscillations, but a near cancellation of all thermal effects. 

3.1. Single Aperture Oscillator (SAO) 

As mentioned before the three Helmholtz oscillators are quite similar. 
Therefore, we will describe one of them in detailS and only point out the 
important differences when discussing the other two. As shown in Fig. 4, 
the oscillator consists of a flexible; 8 pm Kapton membrane which is glued 
over a 5 mm square by 17pm deep recess that has been etched into the 
silicon cell body. The volume enclosed by the membrane and the recess 
forms the inner bath of the oscillator. This assembly is placed inside of a 
brass box which is sealed using indium. The volume between the outer box 
and the assembled oscillator forms the outer bath. 

The silicon body has been etched in two steps. An initial etch forms 
the large recess that contributes the majority of the volume underneath the 
membrane. A second etch forms a pit which breaks through to the other 
side of the chip which has been previously coated with 100 nm of silicon- 
nitride. This leaves a square, freestanding Si-Ni window which is 
approximately 30pm on a side. A small aperture, which serves as the flow 
channel, is made in this window using electron beam lithography.' The 
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Fig. 4. Schematic diagram of the single aperture Helmholtz oscillator 
(SAO). The vertical dimension and membrane deflection are greatly 
exaggerated. The pickup coil is actually a sprially wound pancake coil 
which is glued to the metal cell holder. The gap between the pickup 
coil and membrane is roughly 50 ym. 

bottom of the large recess, which is vacuum metalized with 200 nm of gold, 
forms the rigid electrode of a parallel plate capacitor. The bottom side of 
the membrane is vacuum metalized with 100 nm of aluminum forming the 
flexible electrode. Voltages are applied to these electrodes to drive the 
oscillator. The top side of the membrane is sputtered with 200 nm of 
niobium forming the superconducting plane of a SQUID based detectorI3 
which senses the motion of the membrane. The outer volume of the 
oscillator is filled through a superleak tight cryovalve8 which is then closed 
to isolate the cell acoustically and thermally. The inner volume fills through 
the flow channel. The cell and valve are mounted on an internally 
cryopumped 'He refrigerator. The temperature is measured with a nominal 
100 i2 Matsushita carbon resistor which is calibrated against a commer- 
cially calibrated germanium resistor.14 

Both the resonant frequency and Q of the Helmholtz resonance are 
measured as a function of temperature. At low temperatures where the Q 
is quite high, both parameters are obtained from a free decay of the oscilla- 
tion. At high temperatures where the Q is lower, the resonant frequency(Q) 
is obtained from the peak(FWHM) of the frequency response of the 
oscillator. Data was not taken above 1.5 K because the low Q of the 
oscillator degraded its performance for the measurement it was originally 
designed. 

For this oscillator, the flow channel consists of a 0.38 p m  x 1.25 p m  
aperture in a 100 nm thick Si-Ni window. The measured resonant fre- 
quency and Q are shown as the open triangles in Fig. 5. The thin line 
through the data is resonant frequency and Q extracted numerically from 
the calculated frequency response of Eq. 2. The resonant frequency is taken 
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Fig. 5. Resonant frequency and Q for the Single Aperture Helmholtz 
Oscillator(SA0). Open triangles: Measured resonant frequency and Q. 
Solid squares: rZ < I expansion given in Eq. 4. Open circles: 
1 + Ti B expansion given in Eq. 5. Solid line: Results extracted 
numerically from Eq. 2. Note: The theoretical expressions are only 
evaluated every 0.05 K. Data was not taken above 1.5 K. 

to be the frequency at the maximum of the response and the Q is deter- 
mined from the FWHM. With the exception of isothermal compressibility 
which is taken from Ref. 15, all of the thermodynamic data is taken from 
Ref. 12. 

All of the cell parameters were fixed to the measured values except for 
the volume between the oscillator and the outer box. This volume was 
estimated to be 12 mm3. Varying this volume by a factor of 2 did not create 
a significant change in the calculated curves. Although the cell is not made 
from copper, the Kaptiza resistance is again taken from Ref. 10. To 
account for the difference in materials, a temperature independent scale 
factor is the only adjustable parameter used to fit the theoretical curve to 
the data. The theoretical curve in Fig. 5 was generated with a scale factor 
equal to 2. 

The agreement between the numerical calculation and the experi- 
mental data is excellent, but it is useful to derive approximate analytical 
expressions for both the resonant frequency and Q. The aperture is quite 
small and the normal fluid is not expected to significantly contribute to the 
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total mass current. Mathematically, this can be seen from the function 
G(R J=) which is defined in Eq. 27 of Ref. 1. The complex func- 
tion G determines the degree to which the normal fluid is locked by its own 
viscosity. It ranges in magnitude from 0, where the normal fluid is locked 
and contributes no current, to 1, where the normal fluid is as important as 
the superfluid. Although G was derived assuming a circular tube, it can be 
used to give a rough estimate of the normal fluid contribution for this 
geometry. Using R z 0.2 p m  and w z 240 rad/s, G takes on its maximum 
value of 3 x 10 - 4  near T,. Since G is quite small for all temperatures, the 
normal fluid can be safely ignored for this particular oscillator. The volume 
of this oscillator is small and the effects of compressibility are expected to 
be negligible. This is seen from the parameter C,, which compares the 
spring constant of the membrane to the one due to the compression of the 
fluid. For this oscillator, C,,, = lop3. As discussed in Ref. 1, the small value 
of C,, allows us to ignore the numerator of the frequency response when 
investigating the Helmholtz resonance. The parameters P and E, take on a 
maximum absolute values of 5 x l o p 3  near T, showing that the effects of 
thermal expansion are small. Ignoring these effects leaves only the thermal 
effects of superflow. 

By neglecting these small effects, an approximate analytical expression 
for the resonant frequency can be obtained by finding the normalized 
frequency, a,,, at which the magnitude of the frequency response, 
I l/H(Q,, . . .)I, is a maximum. The Q is then given by Rfe,/Irn[H(Q,,, . . .)I .  
We will consider two different limits, one that typically holds at low tem- 
peratures and another that holds at higher temperatures. 

The parameter Ti determines the size of the thermal effects. At low 
temperatures where the specific entropy is small, I'i < 1. The thermal effects 
due to the superflow-driven temperature difference are expected to be 
small. The frequency response is expanded in terms of Ti and the resonant 
frequency and Q of the oscillator are found to be 

For this oscillator, the expansion applies up to about 1.4 K. It is evaluated 
every 0.05 K and is plotted as the solid squares in Fig. 5. 

At higher temperatures, the specific entropy is large, thermal effects 
dominate and the approximation Ti < 1 no longer holds. Instead, we may 
use the approximation 1 +Ti%@;. The physical significance of this 
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approximation is explained below. The resonant frequency and Q are found 
to be 

Since o:,, w o:,(l + ri), this limit applies when ~/(R,C,)~ .  In other 
words, the oscillations are adiabatic. For this oscillator, the expansion 
applies from 1.4 K to T,. It is evaluated every 0.05 K and is plotted as the 
open circles in Fig. 5. 

The previous results are consistent with Brooks et aL3 if an additional 
assumption is made. In Ref. 3, the oscillations were assumed to be adiabatic 
and the thermal effects were assumed to be small. In the language of this 
paper, this corresponds to T; 6 1 and @, 6 1. With this additional assump- 
tion, the leading order of Eqs. 5 is consistent with Eqs. 12 and 28 of Ref. 3. 
An additional term proportional to the thermal expansion appears in 
Ref. 3. It can be obtained from the present results by keeping the -28 term 
in the expansion of 1/H.' Equation 31 of Ref. 3 gives an expression for the 
Q of the Helmholtz oscillator due solely to the viscous losses of the normal 
fluid which is assumed to be nearly completely locked. This result can be 
obtained from the present results if 1/H is expanded by keeping imaginary 
terms due only to G.' The assumption of a nearly locked normal fluid 
makes the argument of G small, and G can be expanded in terms of this 
argument. 

These results may seem complicated, but they can be understood from 
a phasor representation of the forces on the membrane. In Ref. 1 ,  Eq. 35 
gives an expression for the amplitude of the effective force due to the super- 
flow-driven temperature difference. Neglecting compressibility, it can be 
written as 

This force is plotted on a phasor diagram in Fig. 6. It can be seen from 
Eq. 6 that I': is the parameter that determines the size of the thermal 
effects. As ri becomes larger, the thermal effects become more pronounced. 
But, r; does not reveal whether the thermal effects are reactive or dissipative. 
The normalized thermal time constant, @, = @(oh,) = ~ / ( c o ~ , R ~ C , ) ,  
provides this information. If @, % 1, heat is conducted through the Kaptiza 
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Fig. 6 .  Phasor diagram showing the relative amplitude and 
phase of the effective thermal forces. 

resistance and the thermal effects are mostly dissipative. In Fig. 6, this 
corresponds to Ffi,,,,,, being mostly antiparallel to i. When the thermal 
time constants are long, @, 6 1, the superflow builds up a temperature 
difference with very little conduction through the cell wall. The temperature 
difference creates a fountain pressure which then acts back on the mem- 
brane effectively stiffening its spring constant. In Fig. 6, this corresponds to 
* 
Ffi,,,,,,, being mostly antiparallel to x. By examining the phasor diagram in 
the two previously mentioned limits, leading order of Eqs. 4 and 5 can be 
obtained. 

3.2. Aperture Array Oscillator (AAO) 

Although the construction of this oscillator differs slightly from the 
SAO, the main differences lie in the flow channel and the thermal relaxa- 
tion time. The flow channel in this oscillator consists of 4225 square aper- 
tures, 0.1 pm on a side. They are laid out in a square array with a 3 pm 
center to center spacing. Since the apertures are reasonably close together, 
their flow fields interact. This interaction creates an effective length for each 
hole which is on the order of the size of the array and an effective area 
which is on the order of the square of the spacing between the apertures.16 

As shown in Fig. 7, the body of this oscillator consists of an aluminum 
ring with an 8 pm Kapton membrane glued to one face. An annular Kapton 
spacer is glued over this membrane and another Kapton membrane is 
glued to the bottom of the spacer. The top membrane has a low spring 
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Fig. 7. Schematic diagram of the aperture array oscillator (AAO). 
The vertical dimension and membrane deflection are greatly 
exaggerated. The pickup coil is actually a sprially wound pancake coil 
which is placed roughly 150 p m  from the upper membrane. The spacing 
between the membranes is roughly 150 pm. The spacing between the 
membranes and their rigid capacitors plates is also 150pm. 

constant and its position is detected with a SQUID based position sensor13 
similar to the one used in the SAO. A rigid electrode is mounted nearby to 
drive this membrane. The bottom membrane has a high spring constant. 
A small hole is cut in this membrane and a silicon chip containing the 
array of apertures is glued over the hole. A second rigid electrode is used 
to drive this membrane. The assembled oscillator is mounted inside of a 
metal cell holder. Although this cell has two membranes and therefore two 
resonant modes, the membranes are driven in such a way as to only excite 
the Helmholtz mode. This is accomplished by applying voltages to the two 
membranes so that the forces on the membranes are equal but oppositely 
directed. For this type of excitation, the ratio of the upper membrane dis- 
placement to the lower is k, /k , ,  and the two membranes behave as one 
with an effective spring constant of k,k , / (k ,  + k,). 

The cell is mounted on a cryostat which is dipped into a pumped 
helium bath. The Q and resonant frequency are measured from 1.3 K 
to T,. The resonant frequency is taken to be the peak in the oscillator's fre- 
quency response and the Q is calculated from the FWHM. This data is 
shown as the open symbols in Fig. 8. The thin solid line shows the resonant 
frequency and Q extracted numerically from Eq. 2. The values are extracted 
every 0.05 K. The line is only a guide for the eye. There appear to be 
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Fig. 8. Resonant frequency and Q for the Aperture Array Helmholtz 
Oscillator (AAO). Open circles: Measured Q. Open triangles: 
Measured resonant frequency. Solid symbols: 1 + Ti 9 cPi expansion 
given in Eq. 5. Solid line: Result extracted numerically from Eq. 2. 
Note: The theoretical expressions are only evaluated every 0.05 K. 

systematic differences between the measured and calculated resonant fre- 
quency. This is most likely due to systematic errors in the measurement of 
the temperature. The Q data shows a large amount of scatter at the higher 
temperatures. This is result of the frequency response being recorded with 
rather coarse frequency resolution. Therefore, the linewidth could not be 
determined to high precsion. Although the scatter in the data is large, the 
calculated Q agrees with the general trend of the data. 

All of the cell parameters are fixed by the measured values except for 
the effective spring constant of the membranes and the inner volume of the 
oscillator. The effective spring constant is measured to be 1100 N/m. The 
spacing between the two membranes is set by Kapton spacer and cannot 
be measured after the cell is assembled. An estimate of the spacing yields 
an inner volume of 20 mm3. A better fit to the data is found with a spring 
constant of 1500 N/m and an inner volume of 50 mm3. 

The AAO can be treated in a similar way to the SAO because 
estimates of the various terms in the frequency response reveal that G, 
Em,, p and E, 6 1. Over the range of temperature where data was taken the 
approximation 1 +Ti holds. The expansion for this limit, Eq. 5, is 
plotted with filled symbols in Fig. 8. 
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A second difference between the SAO and the AAO lies in the volume 
to surface area ratio of the baths of helium. The gap between the two mem- 
branes in the AAO is approximately 300pm. In the SAO, the gap between 
the membrane and the silicon chip is 17pm. Since the transverse dimen- 
sions of these oscillators is much larger than the gap, the volume to surface 
area ratio is proportional to the gap. In this case, it can be shown that the 
thermal relaxation time is proportional to the gap. Therefore, the thermal 
time constant for the AAO is much larger and @, is smaller than for the 
SAO. At high temperatures where the thermal effects dominate, the effec- 
tive thermal force has a much smaller dissipative component in the AAO. 
This accounts for the much higher Q in the AAO. 

Because the thermal relaxation time is long, the AAO exhibits some 
interesting properties in its frequency response below the Helmholtz 
resonance. As seen from Fig. 6, when the frequency of the driving force is 
such that @(o)  % 1 the effective thermal force is 45" out of phase with -kX. 
At temperatures where thermal effects dominate, the result is a response 
which is up to 45" out phase with the drive. This force also acts to stiffen 
the membrane resulting in a decrease in the oscillator amplitude. In Fig. 9, 
the measured amplitude and phase response of the AAO is plotted. The 
calculated frequency response is plotted over the data as the solid lines. 
The agreement is quite good. The frequency response around compres- 
sional anti-resonance, o,,, is not presented because additional acoustic 
resonances (~500-700 Hz) within the cell holder complicated the iden- 
tification of the various modes. 

3.3. Large Diameter Tube Oscillator 

The final oscillator6 has a construction nearly identical to the SAO, 
but the flow path consists of two channels instead of one. The major chan- 
nel is made from a 4 mm long, 100pm inner diameter stainless steel tube 
that is glued into a hole etched through the silicon chip. An additional 
parallel channel consists of an approximately 0.1 pm x 0.7 pm aperture in a 
Si-Ni window. The majority of the flow is through the stainless steel tube. 
Therefore, we will neglect the aperture in the rest of the discussion. 

The resonant frequency and Q data are shown as the open symbols in 
Fig. 10. From the fact that there are oscillations above T,, the normal fluid 
must contribute significantly to the dynamics of the oscillator. This is con- 
firmed by the function G' which has a magnitude as large as 0.8 near Ti. 
The resonant frequency and Q extracted numerically from Eq. 2 are shown 
as the thin solid lines in Fig. 10. Except for a small discrepency in the Q 
between 1.6 K and 2.0 K, the calculated curves agree with the data to 
within the experimental scatter. 
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Fig. 9. Amplitude and phase response of the Aperture Array 
Oscillator (AAO) at 1.4 K. Open circles: Measured data. 
Thick line: Frequency response given by Eq. 2. 

All of the cell parameters are fixed to the measured values except for 
the diameter of the stainless tube and the volume between the oscillator 
and the outer box. No attempt was made to measure the diameter which 
is specified by the manufactuer at 100,um. The theoretical curves in 
Fig. 10 were generated with a diameter of 80,um. The outer volume was 
estimated to be 50 mm3. Varying this volume by a factor of 2 does not 
have a significant effect on the theoretical curves. The Kapitza resistance 
from Ref. 10 is multiplied by a temperature independent scale factor to 
account for the difference between copper and the materials used to con- 
struct the cell. The theoretical curves in Fig. 10 were generated with a 
scale factor of 1.75. 

As discussed in Ref. 1, the normal fluid flow has multiple effects on the 
oscillator. If the normal fluid is completely locked and there are no thermal 
effects due to the superflow-driven temperature difference, the resonant fre- 
quency would vary with temperature as a. The dash-dot curve in 
Fig. 10 shows this dependence. This behavior arises from the fact that the 
membrane displaces both normal and superfluid, but the hole only allows 
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Fig. 10. Resonant frequency and Q for the large diameter tube 
Helmholtz oscillator. Open symbols: Measured Q and resonant fre- 
quency. Thin solid Lines: Results extracted numerically from Eq. 2. 
Dashed-Dot line: No normal fluid flow or thermal effects. Dashed 
line: No normal fluid flow. Thick solid line: Completely free normal 
fluid. Note: The theoretical expressions are only evaluated every 
0.05 K. 

superflow. If the normal fluid was completely free, this temperature 
dependence would be completely cancelled and the resonant frequency 
would be given by the thick solid line in Fig. 10. For this particular 
oscillator, Re(G) x 0.7 near TA giving a resonant frequency which falls 
somewhat below the thick solid line. A second effect of normal fluid flow 
is the cancellation of the superflow-driven temperature difference. If the 
normal fluid is completely locked but we include thermal effects due to the 
superflow, the resonant frequency would display the characteristic upturn 
as shown by the dashed curve in Fig. 10. If the normal fluid were com- 
pletely free, the two mass currents would flow as to not change the ratio 
of super to normal component in the two baths. There would be no tem- 
perature difference and no thermal effects. Since this oscillator does allow 
a large amount of normal fluid flow, there is no large increase in the reso- 
nant frequency at the higher temperatures. Finally, the normal fluid dis- 
sipates energy due to its viscosity. Near TA, the Re(G) = 0.7, but the 
Im(G) % 0.2. In this case, the normal fluid is still quite damped as seen by 
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the low Q around T,. At lower temperatures, the viscous penetration depth 
for the normal fluid grows. This locks the normal fluid in tubes even as 
large as 100,um. This is why the Q at lower temperatures resembles the 
data for the SAO. 

4. CONCLUSIONS 

Various mechanisms have been considered which affect the flow of 
superfluid 4He through constrictions. For small volume Helmholtz 
oscillators with small aperture flow channels, the superflow-driven tem- 
perature difference was found to significantly increase the resonant fre- 
quency. The temperature difference also causes dissipation by driving a 
heat current through the walls of the cell. This mechanism is also respon- 
sible for the subcritical dissipation observed in constant pressure-head flow 
cells. For oscillators with flow channels made from larger diameter 
openings, the partial motion of the normal fluid raises the resonant fre- 
quency above a,, and also partially cancels the increase in frequency due 
to thermal effects. 

The results in this paper, both numerical and approximate expansions, 
agree very well with the measured subcritical resistance of a constant 
pressure-head flow cell and with the Q and resonant frequency of 
Helmholtz oscillators. This quantitative agreement between the calculations 
and experimental data provides an excellent check of their equations 
derived to describe this type of flow. 
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APPENDIX 

Here, we define symbols used in this paper. The notation is the same 
as Ref. 1. 

T = temperature 
s = entropy per unit mass 
p = total fluid mass density 

p, = superfluid mass density 



Thermoviscous Effects in Steady and Oscillating Flow of 'He: Experiments 545 

p, = normal fluid mass density 
q = normal fluid viscosity 
IC = isothermal compressibility 
a = thermal expansion coefficient 

cp = heat capacity per unit mass at constant pressure 
k = membrane spring constant 
A = area of the membrane 
a = cross sectional area of the flow channel 
R = radius of the flow channel 

l,, = total hydraulic length of the flow channel 
Mi = mass of helium in bath i 
C ,  = ( l / C ,  + 1/C2)- '  where Ci is the total heat capacity of helium bath i 
R ,  = total Kapitza resistance from helium bath 1 to bath 2 
ern, = ( ~ K M I  M2)l[ pA2(M, + M2)1 

u = angular frequency of oscillation 

who = Jpsak/[  ~ ~ 1 ~ f / ~ ~ ( 1 +  ern,) I 
Q =quality factor of Helmholtz oscillator 

@(o) = lI(uR,C,) 
@ h  = R T C S )  

I-2 = p2s2TA2(1 + Zrn,)/(kCs) 
P = wT/cp  

e h  = [ a 2 T / ( ~ I C c p ) l [ e m c / ( 1  + C r n c ) l  

i = total mass current 
A P  = pressure drop across flow channel 
R,  =ratio of pressure to mass current for steady flow of a viscous fluid 

of density p through a channel 
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