Visualizing the atomic-scale origin of metallic behavior in Kondo insulators


We thank these Agencies for Research Support

Published Article Science 379, 1214-1218 - March 2023

A Kondo lattice is often electrically insulating at low temperatures. However, several recent experiments have detected signatures of metallicity within this Kondo insulating phase. In this study, we visualized the real-space charge landscape within a Kondo lattice with atomic resolution using a scanning tunneling microscope. We discovered nanometer-scale puddles of metallic conduction electrons centered around uranium-site substitutions in the heavy-fermion compound uranium ruthenium silicide (URu2Si2) and around samarium-site defects in the topological Kondo insulator samarium hexaboride (SmB6). These defects disturbed the Kondo screening cloud, leaving behind a fingerprint of the metallic parent state. Our results suggest that the three-dimensional quantum oscillations measured in SmB6 arise from Kondo-lattice defects.